HIV-1 requires Arf6-mediated membrane dynamics to efficiently enter and infect T lymphocytes

Autor: José-David Machado, Laura García-Expósito, Isabel Puigdomènech, Julià Blanco, Agustín Valenzuela-Fernández, Jonathan Barroso-González
Rok vydání: 2011
Předmět:
Zdroj: Molecular Biology of the Cell
ISSN: 1939-4586
1059-1524
Popis: As Arf6 is key to coordinating plasma membrane trafficking and regulates cellular invasion by several microorganisms, the authors studied Arf6 function during early HIV-1 infection. The data suggest that HIV-1 requires Arf6-driven plasma membrane dynamics and depends on GTP/GDP activity to efficiently fuse, enter, and infect CD4+ T lymphocytes.
As the initial barrier to viral entry, the plasma membrane along with the membrane trafficking machinery and cytoskeleton are of fundamental importance in the viral cycle. However, little is known about the contribution of plasma membrane dynamics during early human immunodeficiency virus type 1 (HIV-1) infection. Considering that ADP ribosylation factor 6 (Arf6) regulates cellular invasion via several microorganisms by coordinating membrane trafficking, our aim was to study the function of Arf6-mediated membrane dynamics on HIV-1 entry and infection of T lymphocytes. We observed that an alteration of the Arf6–guanosine 5′-diphosphate/guanosine 5′-triphosphate (GTP/GDP) cycle, by GDP-bound or GTP-bound inactive mutants or by specific Arf6 silencing, inhibited HIV-1 envelope–induced membrane fusion, entry, and infection of T lymphocytes and permissive cells, regardless of viral tropism. Furthermore, cell-to-cell HIV-1 transmission of primary human CD4+ T lymphocytes was inhibited by Arf6 knockdown. Total internal reflection fluorescence microscopy showed that Arf6 mutants provoked the accumulation of phosphatidylinositol-(4,5)-biphosphate–associated structures on the plasma membrane of permissive cells, without affecting CD4-viral attachment but impeding CD4-dependent HIV-1 entry. Arf6 silencing or its mutants did not affect fusion, entry, and infection of vesicular stomatitis virus G–pseudotyped viruses or ligand-induced CXCR4 or CCR5 endocytosis, both clathrin-dependent processes. Therefore we propose that efficient early HIV-1 infection of CD4+ T lymphocytes requires Arf6-coordinated plasma membrane dynamics that promote viral fusion and entry.
Databáze: OpenAIRE