Fully commutative elements in finite and affine Coxeter groups
Autor: | Riccardo Biagioli, Philippe Nadeau, Frédéric Jouhet |
---|---|
Přispěvatelé: | Combinatoire, théorie des nombres (CTN), Institut Camille Jordan [Villeurbanne] (ICJ), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS), Biagioli R, Frédéric Jouhet, Philippe Nadeau |
Jazyk: | angličtina |
Rok vydání: | 2015 |
Předmět: |
algèbres de Temperley-Lieb
General Mathematics éléments pleinement commutatifs 05E15 05A15 0102 computer and information sciences Point group 01 natural sciences Fully commutative element chemins Combinatorics Temperley-Lieb algebra [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO] FOS: Mathematics Mathematics - Combinatorics empilements de pièces 0101 mathematics Longest element of a Coxeter group Mathematics::Representation Theory Commutative property Mathematics Generating function Groupes de Coxeter Mathematics::Combinatorics Coxeter notation Lattice walk 010102 general mathematics Coxeter group [MATH.MATH-RA]Mathematics [math]/Rings and Algebras [math.RA] fonctions génératrices Mathematics - Rings and Algebras Heaps Rings and Algebras (math.RA) 010201 computation theory & mathematics Coxeter complex Artin group 05E15 05A15 Combinatorics (math.CO) Coxeter element |
Zdroj: | Monatshefte für Mathematik Monatshefte für Mathematik, Springer Verlag, 2015, 178 (1), pp.1-37. ⟨10.1007/s00605-014-0674-7⟩ |
ISSN: | 0026-9255 1436-5081 |
DOI: | 10.1007/s00605-014-0674-7⟩ |
Popis: | An element of a Coxeter group $W$ is fully commutative if any two of its reduced decompositions are related by a series of transpositions of adjacent commuting generators. These elements were extensively studied by Stembridge, in particular in the finite case. They index naturally a basis of the generalized Temperley--Lieb algebra. In this work we deal with any finite or affine Coxeter group $W$, and we give explicit descriptions of fully commutative elements. Using our characterizations we then enumerate these elements according to their Coxeter length, and find in particular that the corrresponding growth sequence is ultimately periodic in each type. When the sequence is infinite, this implies that the associated Temperley--Lieb algebra has linear growth. 37 pages, 27 figures |
Databáze: | OpenAIRE |
Externí odkaz: |