CKS1 Germ Line Exclusion Is Essential for the Transition from Meiosis to Early Embryonic Development
Autor: | Dahui Sun, Sonia del Rincon, Charles Spruck, Marketa Koncicka, Andrej Susor, Zdenka Ellederova, Michal Kubelka |
---|---|
Rok vydání: | 2018 |
Předmět: |
Male
Maturation-Promoting Factor Regulator Embryonic Development Cell Cycle Proteins Germline 03 medical and health sciences Mice Meiosis Cyclin-dependent kinase CDC2-CDC28 Kinases Animals Gene Knock-In Techniques Molecular Biology 030304 developmental biology Cyclin Mice Knockout 0303 health sciences Cyclin-dependent kinase 1 Germinal vesicle biology urogenital system 030305 genetics & heredity Cell Biology Cell biology Mesothelin biology.protein Oocytes Female Developmental biology Research Article |
Zdroj: | Molecular and cellular biology. 39(13) |
ISSN: | 1098-5549 |
Popis: | Cell division cycle (Cdc) kinase subunit (CKS) proteins bind cyclin-dependent kinases (CDKs) and play important roles in cell division control and development, though their precise molecular functions are not fully understood. Mammals express two closely related paralogs called CKS1 and CKS2, but only CKS2 is expressed in the germ line, indicating that it is solely responsible for regulating CDK functions in meiosis. Using cks2(−/−) knockout mice, we show that CKS2 is a crucial regulator of maturation-promoting factor (MPF; CDK1-cyclin A/B) activity in meiosis. cks2(−/−) oocytes display reduced and delayed MPF activity during meiotic progression, leading to defects in germinal vesicle breakdown (GVBD), anaphase-promoting complex/cyclosome (APC/C) activation, and meiotic spindle assembly. cks2(−/−) germ cells express significantly reduced levels of the MPF components CDK1 and cyclins A1/B1. Additionally, injection of MPF plus CKS2, but not MPF alone, restored normal GVBD in cks2(−/−) oocytes, demonstrating that GVBD is driven by a CKS2-dependent function of MPF. Moreover, we generated cks2(cks1/cks1) knock-in mice and found that CKS1 can compensate for CKS2 in meiosis in vivo, but homozygous embryos arrested development at the 2- to 5-cell stage. Collectively, our results show that CKS2 is a crucial regulator of MPF functions in meiosis and that its paralog, CKS1, must be excluded from the germ line for proper embryonic development. |
Databáze: | OpenAIRE |
Externí odkaz: |