Hippocampal mammalian target of rapamycin is implicated in stress-coping behavior induced by cannabidiol in the forced swim test

Autor: Francisco Silveira Guimarães, Ariandra G. Sartim, Samia R. L. Joca, Amanda J. Sales
Rok vydání: 2018
Předmět:
Zdroj: Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Sartim, A G, Sales, A J, Guimarães, F S & Joca, S R 2018, ' Hippocampal mammalian target of rapamycin is implicated in stress-coping behavior induced by cannabidiol in the forced swim test ', Journal of Psychopharmacology, vol. 32, no. 8, pp. 922-931 . https://doi.org/10.1177/0269881118784877
ISSN: 1461-7285
0269-8811
Popis: Background: Cannabidiol is a non-psychotomimetic compound with antidepressant-like effects. However, the mechanisms and brain regions involved in cannabidiol effects are not yet completely understood. Brain-derived neurotrophic factor/tropomyosin-receptor kinase B/mammalian target of rapamycin (BDNF-TrkB-mTOR) signaling, especially in limbic structures, seems to play a central role in mediating the effects of antidepressant drugs. Aim: Since it is not yet known if BDNF-TrkB-mTOR signaling in the hippocampus is critical to the antidepressant-like effects of cannabidiol, we investigated the effects produced by cannabidiol (10/30/60 nmol/0.2 µL) micro-injection into the hippocampus of mice submitted to the forced swim test and to the open field test. Methods: Independent groups received intra-hippocampal injections of rapamycin (mTOR inhibitor, 0.2 nmol/0.2 µL) or K252 (Trk antagonist, 0.01 nmol/0.2 µL), before the systemic (10 mg/kg) or hippocampal (10 nmol/0.2µL) injection of cannabidiol, and were submitted to the same tests. BDNF levels were analyzed in the hippocampus of animals treated with cannabidiol (10 mg/kg). Results: Systemic cannabidiol administration induced antidepressant-like effects and increased BDNF levels in the dorsal hippocampus. Rapamycin, but not K252a, injection into the dorsal hippocampus prevented the antidepressant-like effect induced by systemic cannabidiol treatment (10 mg/kg). Differently, hippocampal administration of cannabidiol (10 nmol/0.2 µL) reduced immobility time, an effect that was blocked by both rapamycin and K252a local microinjection. Conclusion: Altogether, our data suggest that the hippocampal BDNF-TrkB-mTOR pathway is vital for cannabidiol-induced antidepressant-like effect when the drug is locally administered. However, other brain regions may also be involved in cannabidiol-induced antidepressant effect upon systemic administration.
Databáze: OpenAIRE