3D Hand Gesture Recognition by Analysing Set-of-Joints Trajectories

Autor: Jean-Philippe Vandeborre, Quentin De Smedt, Hazem Wannous
Přispěvatelé: Modeling and Analysis of Static and Dynamic Shapes (3D-SAM), Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 (CRIStAL), Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Institut TELECOM/TELECOM Lille1, Institut Mines-Télécom [Paris] (IMT), Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2016
Předmět:
Zdroj: International Conference on Pattern Recognition (ICPR) / UHA3DS 2016 workshop
International Conference on Pattern Recognition (ICPR) / UHA3DS 2016 workshop, Dec 2016, Cancun, Mexico
Understanding Human Activities Through 3D Sensors ISBN: 9783319918624
UHA3DS@ICPR
Popis: International audience; Hand gesture recognition is recently becoming one of the most attractive field of research in Pattern Recognition. In this paper, a skeleton-based approach is proposed for 3D hand gesture recognition. Specifically, we consider the sequential data of hand geometric configuration to capture the hand shape variation, and explore the temporal character of hand motion. 3D Hand gesture are represented as a set of relevant spatiotemporal motion trajectories of hand-parts in an Euclidean space. Trajectories are then interpreted as elements lying on Riemannian manifold of shape space to capture their shape variations and achieve gesture recognition using a linear SVM classifier. The proposed approach is evaluated on a challenging hand gesture dataset containing 14 gestures, performed by 20 participants performing the same gesture with two di↵erent numbers of fingers. Experimental results show that our skeleton-based approach consistently achieves superior performance over a depth-based approach.
Databáze: OpenAIRE