A Soergel-like category for complex reflection groups of rank one

Autor: Anne-Laure Thiel, Thomas Gobet
Přispěvatelé: Laboratoire de Mathématiques Nicolas Oresme (LMNO), Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)
Rok vydání: 2018
Předmět:
Zdroj: Mathematische Zeitschrift
Mathematische Zeitschrift, Springer, In press, ⟨10.1007/s00209-019-02358-x⟩
ISSN: 0025-5874
1432-1823
DOI: 10.48550/arxiv.1812.02284
Popis: We introduce analogues of Soergel bimodules for complex reflection groups of rank one. We give an explicit parametrization of the indecomposable objects of the resulting category and give a presentation of its split Grothendieck ring by generators and relations. This ring turns out to be an extension of the Hecke algebra of the reflection group $W$ and a free module of rank $|W| (|W|-1)+1$ over the base ring. We also show that it is a generically semisimple algebra if defined over the complex numbers.
Comment: 24 pages. Comments welcome !
Databáze: OpenAIRE