Role of lung injury in the pathogenesis of hyaline membrane disease in premature baboons
Autor: | K. S. Meredith, R. A. deLemos, J. J. Coalson, R. J. King, D. R. Gerstmann, R. Kumar, T. J. Kuehl, D. C. Winter, A. Taylor, R. H. Clark, al. et |
---|---|
Rok vydání: | 1989 |
Předmět: |
Male
medicine.medical_specialty Physiology Oxygenation index Hyaline Membrane Disease Blood Pressure Mean airway pressure Lung injury Heart Rate Physiology (medical) Internal medicine medicine Animals Humans Lung volumes Lung Phospholipids Hyaline business.industry Respiration Infant Newborn respiratory system respiratory tract diseases Surgery Disease Models Animal Animals Newborn Cardiology Breathing Gestation Female Airway business Papio |
Zdroj: | Journal of Applied Physiology. 66:2150-2158 |
ISSN: | 1522-1601 8750-7587 |
DOI: | 10.1152/jappl.1989.66.5.2150 |
Popis: | To test the hypothesis that hyaline membrane disease (HMD) has a multifactorial etiology in which barotrauma plays a major role, we compared the immediate institution of high-frequency oscillatory ventilation (HFOV; 15 Hz, n = 5) with positive-pressure ventilation with positive end-expiratory pressure (PPV; n = 7) in premature baboons (140-days gestation) with HMD. Measurements of ventilation settings and physiological parameters were obtained and arterial-to-alveolar O2 (PaO2-to-PAO2) ratio and oxygenation index [(PaO2/PAO2)-to-mean airway pressure ratio (IO2)] were calculated. At death (24 h), static pressure-volume (PV) curves were performed, and phospholipids (PL) and platelet-activating factor (PAF) were measured in lung lavage fluid. Morphological inflation patterns were analyzed using a panel of standards. By design, mean airway pressure was initially higher (19 vs. 13 cmH2O) in the HFOV animals. PaO2-to-PAO2 ratio and IO2 progressively deteriorated in the PPV animals and then stabilized at significantly lower levels than with HFOV. PV curves from HFOV animals had significant increases in lung volume at maximum distending pressure, deflation volume at 10 cmH2O, and hysteresis area compared with PPV, which showed no hysteresis. Seven of seven PPV and only one of five HFOV animals had morphological findings of HMD. PL amount and composition in both groups were consistent with immaturity, even though the quantity was significantly greater in the PPV group. PAF was present (greater than or equal to 0.10 pmol) in six of seven PPV and in the only HFOV animal with HMD. We conclude that HFOV protected PL-deficient premature baboons from changes in gas exchange, lung mechanics, and morphology typical of HMD in this model.(ABSTRACT TRUNCATED AT 250 WORDS) |
Databáze: | OpenAIRE |
Externí odkaz: |