The immune suppressive effect of dexamethasone in rheumatoid arthritis is accompanied by upregulation of interleukin 10 and by differential changes in interferon gamma and interleukin 4 production
Autor: | F.P.J.G. Lafeber, J A G van Roon, M. E. Vianen, C. M. Verhoef, J. W. J. Bijlsma |
---|---|
Přispěvatelé: | Other departments |
Jazyk: | angličtina |
Rok vydání: | 1999 |
Předmět: |
Adult
Male medicine.medical_specialty medicine.medical_treatment T cell Immunology Anti-Inflammatory Agents Cell Culture Techniques Arthritis Severity of Illness Index Dexamethasone General Biochemistry Genetics and Molecular Biology Extended Reports Arthritis Rheumatoid Interferon-gamma Rheumatology T-Lymphocyte Subsets immune system diseases Internal medicine parasitic diseases Immune Tolerance medicine Humans Immunology and Allergy Interferon gamma Glucocorticoids Interleukin 4 Aged business.industry Interleukin hemic and immune systems Middle Aged medicine.disease Interleukin-10 Up-Regulation Interleukin 10 Endocrinology Cytokine medicine.anatomical_structure Cytokines Female Interleukin-4 business medicine.drug |
Zdroj: | Annals of the rheumatic diseases, 58(1), 49-54. BMJ Publishing Group |
ISSN: | 0003-4967 |
Popis: | OBJECTIVES—The influence of dexamethasone on interleukin 10 (IL10) production and the type 1 (T1)/type 2 (T2) T cell balance found in rheumatoid arthritis (RA) was studied. METHODS—Peripheral blood mononuclear cells (PB MNC) were isolated from 14 RA patients both before and 7 and 42 days after high dose dexamethasone pulse therapy. The ex vivo production of IL10, interferon γ (IFNγ) (T1 cell), and IL4 (T2 cell) by PB MNCs was assessed, along with parameters of disease activity (erythrocyte sedimentation rate, C reactive protein, Visual Analogue Scale, Thompson joint score). In addition, the in vitro effect of dexamethasone (0.02, 0.2, and 2 µM) on PB MNC IL10, IFNγ, and IL4 production was studied. RESULTS—Dexamethasone pulse therapy resulted in a rapid and sustained decrease in RA disease activity. IL10 production increased after dexamethasone treatment and this was sustained for at least six weeks. A transient strong decrease in IFNγ was seen shortly after corticosteroid treatment, while IL4 only decreased slightly. This led to an increased IL-4/IFNγ ratio. In vitro, IL10 production was not detectable, IFNγ and IL4 decreased, but the effect was more pronounced for IFNγ than for IL4, which again resulted in an increased IL4/IFNγ ratio. CONCLUSION—Dexamethasone therapy in RA patients leads to a rapid, clinically beneficial effect. The upregulation of IL10 production may be involved in the prolonged clinical benefit. The strong immunosuppressive effect is most evident in the decrease in IFNγ, and is therefore accompanied by a relative shift towards T2 cell activity. In vitro evaluation showed that this shift in T cell balance was a direct effect of dexamethasone and thus independent of the hypothalamic-pituitary-adrenal axis. Keywords: rheumatoid arthritis; dexamethasone; corticosteroids; T1 T cell; T2 T cell; interferon γ; interleukin 4; interleukin 10 |
Databáze: | OpenAIRE |
Externí odkaz: |