Liouville type theorems and regularity of solutions to degenerate or singular problems part I: even solutions

Autor: Stefano Vita, Susanna Terracini, Yannick Sire
Přispěvatelé: Sire, Y, Terracini, S, Vita, S
Rok vydání: 2020
Předmět:
Zdroj: Communications in Partial Differential Equations. 46:310-361
ISSN: 1532-4133
0360-5302
DOI: 10.1080/03605302.2020.1840586
Popis: We consider a class of equations in divergence form with a singular/degenerate weight $$-\mathrm{div}(|y|^a A(x,y)\nabla u)=|y|^a f(x,y)\; \quad\textrm{or} \ \textrm{div}(|y|^aF(x,y))\;.$$ Under suitable regularity assumptions for the matrix $A$ and $f$ (resp. $F$) we prove H\"older continuity of solutions which are even in $y\in\mathbb{R}$, and possibly of their derivatives up to order two or more (Schauder estimates). In addition, we show stability of the $C^{0,\alpha}$ and $C^{1,\alpha}$ a priori bounds for approximating problems in the form $$-\mathrm{div}((\varepsilon^2+y^2)^{a/2} A(x,y)\nabla u)=(\varepsilon^2+y^2)^{a/2} f(x,y)\; \quad\textrm{or} \ \textrm{div}((\varepsilon^2+y^2)^{a/2}F(x,y))$$ as $\varepsilon\to 0$. Finally, we derive $C^{0,\alpha}$ and $C^{1,\alpha}$ bounds for inhomogenous Neumann boundary problems as well. Our method is based upon blow-up and appropriate Liouville type theorems.
Comment: 47 pages
Databáze: OpenAIRE