Equations and Coequations for Weighted Automata
Autor: | Salamanca, J., Bonsangue, M., Rutten, J., Italiano, G.F., Pighizzini, G., Sannella, D.T. |
---|---|
Přispěvatelé: | Italiano, G.F., Pighizzini, G., Sannella, D.T., Computer Security |
Rok vydání: | 2015 |
Předmět: |
Pure mathematics
Computer science Duality (mathematics) Data Science Field (mathematics) Congruence relation Automaton Perspective (geometry) ComputingMethodologies_DOCUMENTANDTEXTPROCESSING Lecture Notes in Computer Science Algebraic number Chinese remainder theorem Algorithm Computer Science::Formal Languages and Automata Theory |
Zdroj: | Italiano, G.F.; Pighizzini, G.; Sannella, D.T. (ed.), Mathematical Foundations of Computer Science 2015 : 40th International Symposium, MFCS 2015, Milan, Italy, August 24-28, 2015, Proceedings, Part I, pp. 444-456 Mathematical Foundations of Computer Science 2015 ISBN: 9783662480564 MFCS (1) Lecture Notes in Computer Science ; 9234, 444-456. Berlin : Springer STARTPAGE=444;ENDPAGE=456;TITLE=Lecture Notes in Computer Science ; 9234 |
Popis: | We study weighted automata from both an algebraic and a coalgebraic perspective. In particular, we consider equations and coequations for weighted automata. We prove a duality result that relates sets of equations (congruences) with (certain) subsets of coequations. As a consequence, we obtain two equivalent but complementary ways to define classes of weighted automata. We show that this duality cannot be generalized to linear congruences in general but we obtain partial results when weights are from a field. |
Databáze: | OpenAIRE |
Externí odkaz: |