Volume growth, temperedness and integrability of matrix coefficients on a real spherical space
Autor: | Bernhard Krötz, Henrik Schlichtkrull, Friedrich Knop, Eitan Sayag |
---|---|
Rok vydání: | 2016 |
Předmět: |
010102 general mathematics
Mathematical analysis Polar decomposition Spherical space 01 natural sciences Local structure Matrix (mathematics) Volume growth Schwartz space 0103 physical sciences FOS: Mathematics 010307 mathematical physics Representation Theory (math.RT) 0101 mathematics Mathematics::Representation Theory Mathematics - Representation Theory Analysis Mathematics |
Zdroj: | Journal of Functional Analysis. 271:12-36 |
ISSN: | 0022-1236 |
DOI: | 10.1016/j.jfa.2016.04.001 |
Popis: | We apply the local structure theorem and the polar decomposition to a real spherical space Z=G/H and control the volume growth on Z. We define the Harish-Chandra Schwartz space on Z. We give a geometric criterion to ensure $L^p$-integrability of matrix coefficients on Z. Additional material of 4 pages added. To appear in J. Funct. Analysis |
Databáze: | OpenAIRE |
Externí odkaz: |