Volume growth, temperedness and integrability of matrix coefficients on a real spherical space

Autor: Bernhard Krötz, Henrik Schlichtkrull, Friedrich Knop, Eitan Sayag
Rok vydání: 2016
Předmět:
Zdroj: Journal of Functional Analysis. 271:12-36
ISSN: 0022-1236
DOI: 10.1016/j.jfa.2016.04.001
Popis: We apply the local structure theorem and the polar decomposition to a real spherical space Z=G/H and control the volume growth on Z. We define the Harish-Chandra Schwartz space on Z. We give a geometric criterion to ensure $L^p$-integrability of matrix coefficients on Z.
Additional material of 4 pages added. To appear in J. Funct. Analysis
Databáze: OpenAIRE