Crystal Structure and Function of 5-Formaminoimidazole-4-carboxamide Ribonucleotide Synthetase from Methanocaldococcus jannaschii

Autor: Robert H. White, Steven E. Ealick, Yang Zhang
Rok vydání: 2007
Předmět:
Zdroj: Biochemistry. 47:205-217
ISSN: 1520-4995
0006-2960
DOI: 10.1021/bi701406g
Popis: Purine biosynthesis requires ten enzymatic steps in higher organisms while prokaryotes require an additional enzyme for step six. In most organisms steps nine and ten are catalyzed by the purH gene product, a bifunctional enzyme with both 5-formaminoimidazole-4-carboxamide-5′-monophosphate ribonucleotide (FAICAR) synthase and inosine monophosphate (IMP) cyclohydrolase activity. Recently it was discovered that Archaea utilize different enzymes to catalyze steps nine and ten. An ATP dependent FAICAR synthetase is encoded by the purP gene and IMP cyclohydrolase is encoded by the purO gene. We have determined the X-ray crystal structures of FAICAR synthetase from Methanocaldococcus jannaschii complexed with various ligands, including the tertiary substrate complex and product complex. The enzyme belongs to the ATP grasp superfamily and is predicted to use a formylphosphate intermediate formed by an ATP-dependent phosphorylation. In addition, we have determined the structures of a PurP ortholog from Pyrococcus furiosus, which is functionally unclassified, in three crystal forms. With approximately 50% sequence identity, P. furiosus PurP is structurally homologous to M. jannaschii PurP. A phylogenetic analysis was performed to explore the possible role of this functionally unclassified PurP.
Databáze: OpenAIRE