Dynamic Compression of Chondrocyte-Agarose Constructs Reveals New Candidate Mechanosensitive Genes
Autor: | Elisabeth Aubert-Foucher, Frédéric Mallein-Gerin, Ludovic Huot, Emeline Perrier-Groult, Anne Paumier, Martine Duterque-Coquillaud, Carole Bougault, David Hot |
---|---|
Přispěvatelé: | Groult, Emeline, Métabolisme, Enzymes et Mécanismes Moléculaires (MEM²), Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-École Supérieure de Chimie Physique Électronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Biologie Tissulaire et d'ingénierie Thérapeutique UMR 5305 (LBTI), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), Institut de biologie et chimie des protéines [Lyon] (IBCP), Centre d’Infection et d’Immunité de Lille - INSERM U 1019 - UMR 9017 - UMR 8204 (CIIL), Institut Pasteur de Lille, Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Lille-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille)-Centre National de la Recherche Scientifique (CNRS), Institut de biologie de Lille - IBL (IBLI), Université de Lille, Sciences et Technologies-Institut Pasteur de Lille, Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP)-Université de Lille, Droit et Santé-Centre National de la Recherche Scientifique (CNRS), This work was financially supported by the CNRS, Université de Lyon, and ANR TecSan 2006. CB was supported by the French Ministry of Research., Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-École Supérieure Chimie Physique Électronique de Lyon-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-École Supérieure Chimie Physique Électronique de Lyon-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille)-Université de Lille-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut Pasteur de Lille, Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP), Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP)-Centre National de la Recherche Scientifique (CNRS)-Université de Lille, Droit et Santé |
Jazyk: | angličtina |
Rok vydání: | 2012 |
Předmět: |
Cartilage
Articular MESH: Extracellular Matrix Proteins MESH: Signal Transduction Anatomy and Physiology [SDV]Life Sciences [q-bio] lcsh:Medicine Smad Proteins Matrix (biology) Mechanotransduction Cellular p38 Mitogen-Activated Protein Kinases Hydrogel Polyethylene Glycol Dimethacrylate MESH: Down-Regulation Extracellular matrix Mice 0302 clinical medicine Transforming Growth Factor beta Molecular Cell Biology MESH: Early Growth Response Protein 1 Cell Mechanics Biomechanics MESH: Animals Mechanotransduction Phosphorylation lcsh:Science Musculoskeletal System MESH: Cartilage Articular/cytology Connective Tissue Cells Cellular Stress Responses MESH: Cartilage Articular/physiology 0303 health sciences Extracellular Matrix Proteins Multidisciplinary MESH: Stress Mechanical biology Sepharose Mechanisms of Signal Transduction Genomics Signaling Cascades MESH: Transcription Factor AP-1 Cell biology [SDV] Life Sciences [q-bio] medicine.anatomical_structure Medicine [SDV.BBM.GTP] Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN] Mechanosensitive channels Mitogen-Activated Protein Kinases Cellular Types MESH: Cartilage Articular/metabolism Signal Transduction Research Article Biotechnology Cell Physiology MESH: Sepharose MAP Kinase Signaling System Integrin Biophysics Down-Regulation Chondrocyte 03 medical and health sciences Chondrocytes Rheumatology Genome Analysis Tools MESH: Chondrocytes [SDV.BBM.GTP]Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN] medicine Genetics Genome-Wide Association Studies Animals Biology MESH: Mice MESH: Transforming Growth Factor beta 030304 developmental biology Early Growth Response Protein 1 MESH: Hydrogel Polyethylene Glycol Dimethacrylate Tissue Engineering MESH: Phosphorylation MESH: Mechanotransduction Cellular MESH: MAP Kinase Signaling System Cartilage lcsh:R MESH: Smad Proteins Transforming growth factor beta Molecular biology MESH: Mitogen-Activated Protein Kinases Transcription Factor AP-1 MESH: p38 Mitogen-Activated Protein Kinases biology.protein lcsh:Q Stress Mechanical 030217 neurology & neurosurgery Developmental Biology |
Zdroj: | PLoS ONE PLoS ONE, 2012, 7 (5), pp.e36964. ⟨10.1371/journal.pone.0036964⟩ PLoS ONE, Vol 7, Iss 5, p e36964 (2012) PLoS ONE, Public Library of Science, 2012, 7 (5), pp.e36964. ⟨10.1371/journal.pone.0036964⟩ |
ISSN: | 1932-6203 |
Popis: | International audience; Articular cartilage is physiologically exposed to repeated loads. The mechanical properties of cartilage are due to its extracellular matrix, and homeostasis is maintained by the sole cell type found in cartilage, the chondrocyte. Although mechanical forces clearly control the functions of articular chondrocytes, the biochemical pathways that mediate cellular responses to mechanical stress have not been fully characterised. The aim of our study was to examine early molecular events triggered by dynamic compression in chondrocytes. We used an experimental system consisting of primary mouse chondrocytes embedded within an agarose hydrogel; embedded cells were pre-cultured for one week and subjected to short-term compression experiments. Using Western blots, we demonstrated that chondrocytes maintain a differentiated phenotype in this model system and reproduce typical chondrocyte-cartilage matrix interactions. We investigated the impact of dynamic compression on the phosphorylation state of signalling molecules and genome-wide gene expression. After 15 min of dynamic compression, we observed transient activation of ERK1/2 and p38 (members of the mitogen-activated protein kinase (MAPK) pathways) and Smad2/3 (members of the canonical transforming growth factor (TGF)-β pathways). A microarray analysis performed on chondrocytes compressed for 30 min revealed that only 20 transcripts were modulated more than 2-fold. A less conservative list of 325 modulated genes included genes related to the MAPK and TGF-β pathways and/or known to be mechanosensitive in other biological contexts. Of these candidate mechanosensitive genes, 85% were down-regulated. Down-regulation may therefore represent a general control mechanism for a rapid response to dynamic compression. Furthermore, modulation of transcripts corresponding to different aspects of cellular physiology was observed, such as non-coding RNAs or primary cilium. This study provides new insight into how chondrocytes respond to mechanical forces. |
Databáze: | OpenAIRE |
Externí odkaz: |