Dynamic Compression of Chondrocyte-Agarose Constructs Reveals New Candidate Mechanosensitive Genes

Autor: Elisabeth Aubert-Foucher, Frédéric Mallein-Gerin, Ludovic Huot, Emeline Perrier-Groult, Anne Paumier, Martine Duterque-Coquillaud, Carole Bougault, David Hot
Přispěvatelé: Groult, Emeline, Métabolisme, Enzymes et Mécanismes Moléculaires (MEM²), Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-École Supérieure de Chimie Physique Électronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Biologie Tissulaire et d'ingénierie Thérapeutique UMR 5305 (LBTI), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), Institut de biologie et chimie des protéines [Lyon] (IBCP), Centre d’Infection et d’Immunité de Lille - INSERM U 1019 - UMR 9017 - UMR 8204 (CIIL), Institut Pasteur de Lille, Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Lille-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille)-Centre National de la Recherche Scientifique (CNRS), Institut de biologie de Lille - IBL (IBLI), Université de Lille, Sciences et Technologies-Institut Pasteur de Lille, Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP)-Université de Lille, Droit et Santé-Centre National de la Recherche Scientifique (CNRS), This work was financially supported by the CNRS, Université de Lyon, and ANR TecSan 2006. CB was supported by the French Ministry of Research., Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-École Supérieure Chimie Physique Électronique de Lyon-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-École Supérieure Chimie Physique Électronique de Lyon-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille)-Université de Lille-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut Pasteur de Lille, Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP), Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP)-Centre National de la Recherche Scientifique (CNRS)-Université de Lille, Droit et Santé
Jazyk: angličtina
Rok vydání: 2012
Předmět:
Cartilage
Articular

MESH: Extracellular Matrix Proteins
MESH: Signal Transduction
Anatomy and Physiology
[SDV]Life Sciences [q-bio]
lcsh:Medicine
Smad Proteins
Matrix (biology)
Mechanotransduction
Cellular

p38 Mitogen-Activated Protein Kinases
Hydrogel
Polyethylene Glycol Dimethacrylate

MESH: Down-Regulation
Extracellular matrix
Mice
0302 clinical medicine
Transforming Growth Factor beta
Molecular Cell Biology
MESH: Early Growth Response Protein 1
Cell Mechanics
Biomechanics
MESH: Animals
Mechanotransduction
Phosphorylation
lcsh:Science
Musculoskeletal System
MESH: Cartilage
Articular/cytology

Connective Tissue Cells
Cellular Stress Responses
MESH: Cartilage
Articular/physiology

0303 health sciences
Extracellular Matrix Proteins
Multidisciplinary
MESH: Stress
Mechanical

biology
Sepharose
Mechanisms of Signal Transduction
Genomics
Signaling Cascades
MESH: Transcription Factor AP-1
Cell biology
[SDV] Life Sciences [q-bio]
medicine.anatomical_structure
Medicine
[SDV.BBM.GTP] Life Sciences [q-bio]/Biochemistry
Molecular Biology/Genomics [q-bio.GN]

Mechanosensitive channels
Mitogen-Activated Protein Kinases
Cellular Types
MESH: Cartilage
Articular/metabolism

Signal Transduction
Research Article
Biotechnology
Cell Physiology
MESH: Sepharose
MAP Kinase Signaling System
Integrin
Biophysics
Down-Regulation
Chondrocyte
03 medical and health sciences
Chondrocytes
Rheumatology
Genome Analysis Tools
MESH: Chondrocytes
[SDV.BBM.GTP]Life Sciences [q-bio]/Biochemistry
Molecular Biology/Genomics [q-bio.GN]

medicine
Genetics
Genome-Wide Association Studies
Animals
Biology
MESH: Mice
MESH: Transforming Growth Factor beta
030304 developmental biology
Early Growth Response Protein 1
MESH: Hydrogel
Polyethylene Glycol Dimethacrylate

Tissue Engineering
MESH: Phosphorylation
MESH: Mechanotransduction
Cellular

MESH: MAP Kinase Signaling System
Cartilage
lcsh:R
MESH: Smad Proteins
Transforming growth factor beta
Molecular biology
MESH: Mitogen-Activated Protein Kinases
Transcription Factor AP-1
MESH: p38 Mitogen-Activated Protein Kinases
biology.protein
lcsh:Q
Stress
Mechanical

030217 neurology & neurosurgery
Developmental Biology
Zdroj: PLoS ONE
PLoS ONE, 2012, 7 (5), pp.e36964. ⟨10.1371/journal.pone.0036964⟩
PLoS ONE, Vol 7, Iss 5, p e36964 (2012)
PLoS ONE, Public Library of Science, 2012, 7 (5), pp.e36964. ⟨10.1371/journal.pone.0036964⟩
ISSN: 1932-6203
Popis: International audience; Articular cartilage is physiologically exposed to repeated loads. The mechanical properties of cartilage are due to its extracellular matrix, and homeostasis is maintained by the sole cell type found in cartilage, the chondrocyte. Although mechanical forces clearly control the functions of articular chondrocytes, the biochemical pathways that mediate cellular responses to mechanical stress have not been fully characterised. The aim of our study was to examine early molecular events triggered by dynamic compression in chondrocytes. We used an experimental system consisting of primary mouse chondrocytes embedded within an agarose hydrogel; embedded cells were pre-cultured for one week and subjected to short-term compression experiments. Using Western blots, we demonstrated that chondrocytes maintain a differentiated phenotype in this model system and reproduce typical chondrocyte-cartilage matrix interactions. We investigated the impact of dynamic compression on the phosphorylation state of signalling molecules and genome-wide gene expression. After 15 min of dynamic compression, we observed transient activation of ERK1/2 and p38 (members of the mitogen-activated protein kinase (MAPK) pathways) and Smad2/3 (members of the canonical transforming growth factor (TGF)-β pathways). A microarray analysis performed on chondrocytes compressed for 30 min revealed that only 20 transcripts were modulated more than 2-fold. A less conservative list of 325 modulated genes included genes related to the MAPK and TGF-β pathways and/or known to be mechanosensitive in other biological contexts. Of these candidate mechanosensitive genes, 85% were down-regulated. Down-regulation may therefore represent a general control mechanism for a rapid response to dynamic compression. Furthermore, modulation of transcripts corresponding to different aspects of cellular physiology was observed, such as non-coding RNAs or primary cilium. This study provides new insight into how chondrocytes respond to mechanical forces.
Databáze: OpenAIRE