Popis: |
Smooth 4-regular Hamiltonian graphs are generalizations of cycle-plus-triangles graphs. While the latter have been shown to be 3-choosable, 3-colorability of the former is NP-complete. In this paper we first show that the independent set problem for 3-regular Hamiltonian planar graphs is NP-complete, and using this result we show that this problem is also NP-complete for smooth 4-regular Hamiltonian graphs. We also show that this problem remains NP-complete if we restrict the problem to the existence of large independent sets (i.e., independent sets whose size is at least one third of the order of the graphs). |