Stability of the phase transition of critical-field Ising model on Cayley trees under inhomogeneous external fields
Autor: | Aernout C. D. van Enter, Eric O. Endo, Rodrigo Bissacot |
---|---|
Přispěvatelé: | Dynamical Systems, Geometry & Mathematical Physics |
Jazyk: | angličtina |
Rok vydání: | 2017 |
Předmět: |
Statistics and Probability
Phase transition Critical field FOS: Physical sciences 01 natural sciences Stability (probability) Combinatorics 0103 physical sciences Ising model FOS: Mathematics External field Statistical physics 0101 mathematics 82B20 05C05 82B26 010306 general physics Mathematical Physics Condensed Matter - Statistical Mechanics Mathematics Statistical Mechanics (cond-mat.stat-mech) Applied Mathematics 010102 general mathematics Probability (math.PR) Mathematical Physics (math-ph) Inhomogeneous external fields Tree (graph theory) Ferromagnetism Homogeneous Modeling and Simulation Cayley tree Phase transition stability MUDANÇA DE FASE Mathematics - Probability |
Zdroj: | Stochastic processes and their applications, 127(12), 4126-4138. ELSEVIER SCIENCE BV Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual) Universidade de São Paulo (USP) instacron:USP |
ISSN: | 0304-4149 |
Popis: | We consider the ferromagnetic Ising model with spatially dependent external fields on a Cayley tree, and we investigate the conditions for the existence of the phase transition for a class of external fields, asymptotically approaching a homogeneous critical external field. Our results extend earlier results by Rozikov and Ganikhodjaev. Comment: 13 pages, 2 pictures |
Databáze: | OpenAIRE |
Externí odkaz: |