Almost isomorphism for countable state Markov shifts
Autor: | Mike Boyle, Jérôme Buzzi, Ricardo Gómez |
---|---|
Přispěvatelé: | Department of Mathematics (UNIVERSITY OF MARYLAND), University of Maryland [College Park], University of Maryland System-University of Maryland System, Centre de Mathématiques Laurent Schwartz (CMLS), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X), Instituto de Matematicas [México], Universidad Nacional Autónoma de México (UNAM) |
Jazyk: | angličtina |
Rok vydání: | 2004 |
Předmět: |
37C99
37B10 General Mathematics magic word [MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS] 37B40 37D35 Dynamical Systems (math.DS) Topological entropy 01 natural sciences Topological entropy in physics Conjugacy class 0103 physical sciences FOS: Mathematics Countable set topological Markov chain 0101 mathematics Mathematics - Dynamical Systems Entropy rate Mathematics Discrete mathematics Markov chain Applied Mathematics 010102 general mathematics smooth ergodic theory Subshift of finite type entropy conjugacy strong positive recurrence Artin-Mazur zeta function 010307 mathematical physics almost isomorphism entropy countable state Markov shift Joint quantum entropy |
Popis: | Countable state Markov shifts are a natural generalization of the well-known subshifts of finite type. They are the subject of current research both for their own sake and as models for smooth dynamical systems. In this paper, we investigate their almost isomorphism and entropy conjugacy and obtain a complete classification for the especially important class of strongly positive recurrent Markov shifts. This gives a complete classification up to entropy conjugacy of the natural extensions of smooth entropy expanding maps, including all smooth interval maps with non-zero topological entropy. |
Databáze: | OpenAIRE |
Externí odkaz: |