Regioselective Metalation of 6-Methylpurines: Synthesis of Fluoromethyl Purines and Related Nucleosides for Suicide Gene Therapy of Cancer
Autor: | John A. Secrist, William B. Parker, Abdalla E. A. Hassan, Paula W. Allan |
---|---|
Rok vydání: | 2009 |
Předmět: |
Purine
Halogenation Stereochemistry Metalation Purine nucleoside phosphorylase Antineoplastic Agents Genetic Therapy General Medicine Prodrug Riboside Biochemistry chemistry.chemical_compound Purine-Nucleoside Phosphorylase chemistry Purines Cell Line Tumor Neoplasms Escherichia coli Genetics Humans Molecular Medicine Moiety Purine metabolism Nucleoside Cell Proliferation |
Zdroj: | Nucleosides, Nucleotides & Nucleic Acids. 28:642-656 |
ISSN: | 1532-2335 1525-7770 |
DOI: | 10.1080/15257770903091938 |
Popis: | Metalation of 6-methyl-9-(tetrahydro-2H-pyran-2-yl)purine (10) with lithiating agents of varying basicities such as n-BuLi and LiHMDS in THF at -78 degrees C resulted in metalation at both of the 6-CH(3) moiety and the 8-CH position, irrespective of the molar equivalence of the base. On the other hand, a regioselective metalation at the 6-CH(3) moiety of 10 was observed with NaHMDS or KHMDS, under similar conditions. Treatment of the potassium salts of 10 and of the protected riboside derivative 6-methyl-9-(beta-D-2,3,5-tri-O-tert-butyldimethylsilylribofuranosyl)purine (22) with N-fluorobenzenesulfonamide (NFSI) at -78 degrees C gave the corresponding 6-fluoromethylpurine derivatives 11 and 23, respectively, in good yields. Deprotection of 11 and 23 under standard conditions gave 6-fluoromethylpurine (6-FMeP, 3) and 6-fluoromethyl-9-(beta-D-ribofuranosyl)purine (6-FMePR, 4), respectively, in high yield. Both 3 and 4 demonstrated cytotoxic activity against CCRF-CEM cells in culture. 6-FMePR is a good substrate for E. coli purine nucleoside phosphorylase (E. coli PNP) with a comparable substrate activity to that of the parent nucleoside, 6-methyl-9-(beta-D-ribofuranosyl)purine (6-MePR, 21). The cytotoxic activity of 6-FMeP along with the substrate activity of 6-FMePR with E. coli PNP meet the fundamental requirements for using 6-FMeP as a potential toxin in PNP/prodrug based cancer gene therapy. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |