Morphology matters: 0D/2D WO3 nanoparticle-ruthenium oxide nanosheet composites for enhanced photocatalytic oxygen evolution reaction rates

Autor: Hugo A. Vignolo‐González, Andreas Gouder, Sourav Laha, Viola Duppel, Sol Carretero‐Palacios, Alberto Jiménez‐Solano, Takayoshi Oshima, Peter Schützendübe, Bettina V. Lotsch
Přispěvatelé: UAM. Departamento de Física de Materiales
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Advanced Energy Materials
Popis: In the field of artificial photosynthesis with semiconductor light harvesters, the default cocatalyst morphologies are isotropic, 0D nanoparticles. Herein, the use of highly anisotropic 2D ruthenium oxide nanosheet (RONS) cocatalysts as an approach to enhance photocatalytic oxygen evolution (OER) rates on commercial WO3 nanoparticles (0D light harvester) is presented. At optimal cocatalyst loadings and identical photocatalysis conditions, WO3 impregnated with RONS (RONS/WO3) shows a fivefold increase in normalized photonic efficiency compared to when it is impregnated with conventional ruthenium oxide (rutile) nanoparticles (RONP/WO3). The superior RONS/WO3 performance is attributed to two special properties of the RONS: i) lower electrochemical water oxidation overpotential for RONS featuring highly active edge sites, and ii) decreased parasitic light absorption on RONS. Evidence is presented that OER photocatalytic performance can be doubled with control of RONS edges and it is shown that compared to WO3 impregnated with RONP, the advantageous optical properties and geometry of RONS decrease the fraction of light absorbed by the cocatalyst, thus reducing the parasitic light absorption on the RONS/WO3 composite. Therefore, the results presented in the current study are expected to promote engineering of cocatalyst morphology as a complementary concept to optimize light harvester-cocatalyst composites for enhanced photocatalytic efficiency
A.G. and S.L. contributed equally to this work. Financial support is gratefully acknowledged from the Max Planck Society, the Cluster of Excellence “e-conversion” (EXC 2089/1–390776260), and the Center for Nanoscience. S.L. is thankful to the Science and Engineering Research Board (SERB), Government of India, for the award of a Ramanujan Fellowship (RJF/2021/000050). A.J.-S. gratefully acknowledges Spanish Ministry of Universities for funding through a Beatriz Galindo Research fellowship BG20/00015. The authors thank Prof. Gisela Schütz (Max Planck Institute for Intelligent Systems, MPI-IS, Stuttgart) for access to XPS analysis at their facilities. The authors are grateful to Dr. Gunther Richter for helpful discussion of XPS data and the MPI-IS for the XPS infrastructure support. The authors thank Andres RodríguezCamargo for FTIR and PXRD measurements and Marie-Luise Schreiber for extensive ICPOES elemental analysis. Open access funding enabled and organized by Projekt DEAL
Databáze: OpenAIRE