Legendre foliations on contact manifolds

Autor: Paulette Libermann
Rok vydání: 1991
Předmět:
Zdroj: Differential Geometry and its Applications. 1:57-76
ISSN: 0926-2245
DOI: 10.1016/0926-2245(91)90022-2
Popis: Using Jacobi structures methods, we investigate properties of Legendre foliations on contact manifolds. We show that a Legendre foliation F on a contact manifold is “complete” if and only if the “pseudo-orthogonal” distribution F ⊥ is completely integrable; then the leaves of F and F ⊥ have affine structures. We show that for any Legendre foliation, the contact form is locally equivalent to the Poincare-Cartain integral invariant σpidxiHdt; we study the special cases a) H is a constant (complete case), b) (∂2H/∂pi∂pj) is non-degenerate.
Databáze: OpenAIRE