Reactivity of HDL subfractions towards lecithin-cholesterol acyltransferase. Modulation by their content in free cholesterol

Autor: Gilles Simard, Dominique Loiseau, Bertrand Perret, Andrée Girault
Rok vydání: 1989
Předmět:
Zdroj: Biochimica et biophysica acta. 1005(3)
ISSN: 0006-3002
Popis: (1) Human HDL2 (d 1.070 – 1.125) and HDL3 (d 1.125 – 1.21) labelled with unesterified [14C]cholesterol, were incubated with a source of lecithin-cholesterol acyltransferase. For optimal activity, the reaction required the addition of albumin in excess, at least 3-times greater than the concentration of HDL-free cholesterol. Under such conditions, the reaction appeared saturable. HDL3 was found the most efficient substrate and theVmax values expressed for 1.5 IU LCAT/ml and with an albumin/free cholesterol ratio of 3, were 8.3 nmol free cholesterol esterified/ml per h and 4.1 nmol/ml per h for HDL3 and HDL2, respectively. (2) HDL3 were modified in the presence of VLDL by inducing triacylglycerol lipolysis with a semipurified lipoprotein lipase from bovine milk. The newly formed HDL had gained free cholesterol and phospholipids, so that about 50% of these modified HDL, referred to as light-LIP-HDL3, were reisolated in the HDL2 density range. Light-LIP-HDL3 were enriched mostly in free cholesterol (+160%) and in phospholipid (+40%). Their reactivity towards LCAT was half-reduced compared to parent HDL3, which correlated well with a decrease in their phospholipid/free cholesterol molar ratio. Moreover, HDL3 artificially enriched in free cholesterol and exhibiting a comparable PL/FC behaved like lipolysis-modified HDL in their reactivity towards LCAT. (3) HDL3 were also modified by co-incubation with VLDL (post-VLDL-HDL3), or with VLDL and a source of lipid transfer protein (CET-HDL3). The latter treatment greatly affected the lipid composition of the core particle (−25% esterified cholesterol, +190% TG). In both cases, the moderate decreasing LCAT reactivity observed could be related to the phospholipid/free cholesterol ratio. Thus, like in artificial substrates, the lipid composition of the HDL surface may control the rate of LCAT-mediated cholesterol esterification.
Databáze: OpenAIRE