Incremental input-to-state stability for Lur'e systems and asymptotic behaviour in the presence of Stepanov almost periodic forcing
Autor: | Christopher Guiver, Hartmut Logemann, Max E. Gilmore |
---|---|
Rok vydání: | 2021 |
Předmět: |
Almost periodic function
Basis (linear algebra) Differential equation Quantitative Biology::Molecular Networks Applied Mathematics Absolute stability almost periodic functions circle criterion differential inclusions incremental (integral) input-to-state stability (integral) input-to-state stability Lur’e systems State (functional analysis) Stability (probability) Differential inclusion Convergence (routing) Applied mathematics Circle criterion Analysis Mathematics |
Zdroj: | Journal of Differential Equations. 300:692-733 |
ISSN: | 0022-0396 |
DOI: | 10.1016/j.jde.2021.08.009 |
Popis: | We prove (integral) input-to-state stability results for a class of forced Lur'e differential inclusions and use them to investigate incremental (integral) input-to-state stability properties of Lur'e differential equations. The latter provide a basis for the derivation of convergence results for trajectories of Lur'e equations generated by Stepanov almost periodic inputs. |
Databáze: | OpenAIRE |
Externí odkaz: |