Structure of ABC transporters

Autor: Michael Nicolaou, Edward J. Andress, Kenneth J. Linton, Joseph K. Zolnerciks
Rok vydání: 2011
Předmět:
Zdroj: Essays in biochemistry. 50(1)
ISSN: 1744-1358
Popis: ABC (ATP-binding cassette) transporters are primary active membrane proteins that translocate solutes (allocrites) across lipid bilayers. The prototypical ABC transporter consists of four domains: two cytoplasmic NBDs (nucleotide-binding domains) and two TMDs (transmembrane domains). The NBDs, whose primary sequence is highly conserved throughout the superfamily, bind and hydrolyse ATP to power the transport cycle. The TMDs, whose primary sequence and protein fold can be quite disparate, form the translocation pathway across the membrane and generally (but not always) determine allocrite specificity. Structure determination of ABC proteins initially took advantage of the relative ease of expression and crystallization of the hydrophilic bacterial NBDs in isolation from the transporter complex, and revealed detailed information on the structural fold of these domains, the amino acids involved in the binding and hydrolysis of nucleotide, and the head-to-tail arrangement of the NBD–NBD dimer interface. More recently, several intact transporters have been crystallized and three types have, so far, been characterized: type I and II ABC importers, and ABC exporters. All three are present in prokaryotes, but only the ABC exporters appear to be present in eukaryotes. Their structural determination has provided insight into the mechanisms of energy and signal transduction between the NBDs and TMDs (i.e. between the ATP- and allocrite-binding sites) and, for some, the nature of the allocrite-binding site(s) within the TMDs. In this chapter, we focus primarily on the ABC exporters and describe the structural, biochemical and biophysical evidence for and against the controversial bellows-like mechanism proposed for allocrite efflux.
Databáze: OpenAIRE