Optimized electrical control of a Si/SiGe spin qubit in the presence of an induced frequency shift

Autor: Giles Allison, Seigo Tarucha, Noritaka Usami, Jun Yoneda, Shunri Oda, Tetsuo Kodera, Tomohiro Otsuka, Takashi Nakajima, Kenta Takeda, Matthieu R. Delbecq, Kohei M. Itoh, Yusuke Hoshi
Přispěvatelé: RIKEN - Institute of Physical and Chemical Research [Japon] (RIKEN), Tohoku University [Sendai], Laboratoire Pierre Aigrain (LPA), Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Tokyo University of Science [Tokyo], Nagoya University, Keio University, Tokyo Institute of Technology [Tokyo] (TITECH), The University of Tokyo (UTokyo)
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Coherence time
Quantum decoherence
Computer Networks and Communications
FOS: Physical sciences
02 engineering and technology
Electron
01 natural sciences
lcsh:QA75.5-76.95
[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph]
0103 physical sciences
Mesoscale and Nanoscale Physics (cond-mat.mes-hall)
Computer Science (miscellaneous)
Hardware_ARITHMETICANDLOGICSTRUCTURES
010306 general physics
Physics
Condensed Matter - Mesoscale and Nanoscale Physics
Spins
Quantum dots
business.industry
Statistical and Nonlinear Physics
Quantum Physics
021001 nanoscience & nanotechnology
lcsh:QC1-999
Computational Theory and Mathematics
Quantum dot
Qubit
Optoelectronics
lcsh:Electronic computers. Computer science
0210 nano-technology
Electric dipole spin resonance
business
Qubits
Rabi frequency
lcsh:Physics
Zdroj: npj Quantum Information, Vol 4, Iss 1, Pp 1-6 (2018)
npj Quantum Information
npj Quantum Information, Nature, 2018, 4 (1), pp.54 (2018). ⟨10.1038/s41534-018-0105-z⟩
ISSN: 2056-6387
DOI: 10.1038/s41534-018-0105-z
Popis: Electron spins confined in quantum dots are an attractive system to realize high-fidelity qubits owing to their long coherence time. With the prolonged spin coherence time, however, the control fidelity can be limited by systematic errors rather than decoherence, making characterization and suppression of their influence crucial for further improvement. Here we report that the control fidelity of Si/SiGe spin qubits can be limited by the microwave-induced frequency shift of electric dipole spin resonance and it can be improved by optimization of control pulses. As we increase the control microwave amplitude, we observe a shift of the qubit resonance frequency, in addition to the increasing Rabi frequency. We reveal that this limits control fidelity with a conventional amplitude-modulated microwave pulse below 99.8%. In order to achieve a gate fidelity >99.9%, we introduce a quadrature control method, and validate this approach experimentally by randomized benchmarking. Our finding facilitates realization of an ultra-high-fidelity qubit with electron spins in quantum dots.
Databáze: OpenAIRE