Kac Polynomials for Canonical Algebras

Autor: Pierre-Guy Plamondon, Olivier Schiffmann
Přispěvatelé: Laboratoire de Mathématiques d'Orsay (LMO), Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: International Mathematics Research Notices
International Mathematics Research Notices, Oxford University Press (OUP), 2019, 2019 (13), pp.3981-4003. ⟨10.1093/imrn/rnx244⟩
ISSN: 1073-7928
1687-0247
DOI: 10.1093/imrn/rnx244⟩
Popis: We prove that the number of geometrically indecomposable representations of fixed dimension vector $\mathbf{d}$ of a canonical algebra $C$ defined over a finite field $\mathbb{F}_q$ is given by a polynomial in $q$ (depending on $C$ and $\mathbf{d}$). We prove a similar result for squid algebras. Finally, we express the volume of the moduli stacks of representations of these algebras of a fixed dimension vector in terms of the corresponding Kac polynomials.
Databáze: OpenAIRE