Kac Polynomials for Canonical Algebras
Autor: | Pierre-Guy Plamondon, Olivier Schiffmann |
---|---|
Přispěvatelé: | Laboratoire de Mathématiques d'Orsay (LMO), Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: | |
Zdroj: | International Mathematics Research Notices International Mathematics Research Notices, Oxford University Press (OUP), 2019, 2019 (13), pp.3981-4003. ⟨10.1093/imrn/rnx244⟩ |
ISSN: | 1073-7928 1687-0247 |
DOI: | 10.1093/imrn/rnx244⟩ |
Popis: | We prove that the number of geometrically indecomposable representations of fixed dimension vector $\mathbf{d}$ of a canonical algebra $C$ defined over a finite field $\mathbb{F}_q$ is given by a polynomial in $q$ (depending on $C$ and $\mathbf{d}$). We prove a similar result for squid algebras. Finally, we express the volume of the moduli stacks of representations of these algebras of a fixed dimension vector in terms of the corresponding Kac polynomials. |
Databáze: | OpenAIRE |
Externí odkaz: |