Optimal use of a numerical method for solving differtial equations based on Taylor-series expansions
Autor: | JK Nieuwenhuizen, Pjm Peter Sonnemans, de Lph Philip Goey |
---|---|
Přispěvatelé: | Mechanical Engineering, Group De Goey |
Jazyk: | angličtina |
Rok vydání: | 1991 |
Předmět: |
Numerical Analysis
Truncation error Differential equation Applied Mathematics Numerical analysis Mathematical analysis General Engineering Finite difference Finite difference method ComputerApplications_COMPUTERSINOTHERSYSTEMS symbols.namesake ComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATION Taylor series symbols Mathematics Numerical stability Taylor expansions for the moments of functions of random variables |
Zdroj: | International Journal for Numerical Methods in Engineering, 32(3), 471-499. Wiley |
ISSN: | 0029-5981 |
DOI: | 10.1002/nme.1620320303 |
Popis: | SUMMARY Efficiency in solving differential equations is improved by increasing the order of a Taylor series approximation. Computing time can be reduced up to a factor of 40 and an amount of memory storage can be saved, up to a factor of 70. The truncation error can be estimated not only by order but also by magnitude. |
Databáze: | OpenAIRE |
Externí odkaz: |