Existence issues for a large class of degenerate elliptic equations with nonlinear Hamiltonians
Autor: | Birindelli, I., giulio galise, Rodríguez-Paredes, A. |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Zdroj: | Scopus-Elsevier |
DOI: | 10.48550/arxiv.2004.07189 |
Popis: | We give sufficient conditions for the existence and uniqueness, in bounded uniformly convex domains $\Omega$, of solutions of degenerate elliptic equations depending also on the nonlinear gradient term $H$, in term of the size of $\Omega$, of the forcing term $f$ and of $H$. The results apply to a wide class of equations, having as principal part significant examples, e.g. linear degenerate operators, weighted partial trace operators and the homogeneous Monge-Amp\`ere operator. Comment: 25 pages |
Databáze: | OpenAIRE |
Externí odkaz: |