Combined reactive/non-reactive DC magnetron sputtering of high temperature composite AlN–TiB2–TiSi2
Autor: | Alexander D. Pogrebnjak, L.E. Coy, Stefan Jurga, Grzegorz Nowaczyk, Luis Yate, Karol Załęski, A.V. Pshyk |
---|---|
Rok vydání: | 2016 |
Předmět: |
Wear test
Materials science Hard coatings Scanning electron microscope 02 engineering and technology 010402 general chemistry 01 natural sciences Nanoindentation Sputtering lcsh:TA401-492 General Materials Science Composite material Elastic modulus Nanocomposite Mechanical Engineering Sputter deposition 021001 nanoscience & nanotechnology Microstructure 0104 chemical sciences Functionally graded film Mechanics of Materials Transmission electron microscopy lcsh:Materials of engineering and construction. Mechanics of materials 0210 nano-technology |
Zdroj: | Materials & Design, Vol 94, Iss, Pp 230-239 (2016) |
ISSN: | 0264-1275 |
DOI: | 10.1016/j.matdes.2015.12.174 |
Popis: | High temperature composite target AlN–TiB2–TiSi2 with heterogeneous distribution of compounds (AlN—50 wt.%; TiB2—35 wt.%; TiSi2—15 wt.%) is used for sputtering via combined reactive/non-reactive DC magnetron sputtering onto substrate materials either cylindrical polished steel (Fe, 18%—Ni, 12%—Cr, 10%—Ti) 3 mm diameter or monocrystalline silicon. The gradient coating has been produced by sequential non-reactive and reactive sputtering of the target. The structural and morphological properties of the deposited films are analyzed by transmission electron microscopy, scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy and Raman spectroscopy. The tribo-mechanical properties are studied by means of nanoindentation and nanowear tests. The gradient film is composed of two layers with different microstructure and elemental composition. The first layer with thickness ~200 nm is mainly based on light B, C and N as well metal elements Al, Si and Ti. The presence of very well distributed nanocrystals embedded in an amorphous matrix, with crystal sizes ranging from 5 to 40 nm is observed in the second layer ~700 nm thickness and composed of Al, Ti, Si, B, and N. Films show very flat surfaces, with roughness around 0.35 nm. The hardness, elastic modulus, elastic recovery (We), H/E⁎ ratio and H3/E⁎2 ratio are determined as 17.55 GPa, 216.7 GPa, 60%, 0.08 and 0.12 GPa, respectively. Nanowear tests demonstrate relatively high wear resistance of the coatings. Samples show promising characteristics for hard protective adaptive coatings and diffusion barriers due to short propagation of dislocations in the amorphous matrix and the elastic and hard nature of the nanocomposite structure. Keywords: Hard coatings, Nanocomposite, Functionally graded film, Nanoindentation, Wear test |
Databáze: | OpenAIRE |
Externí odkaz: |