A note on Lie algebra cohomology

Autor: Michael Larsen, Valery A. Lunts
Rok vydání: 2021
Předmět:
Zdroj: Algebra & Number Theory. 15:773-783
ISSN: 1944-7833
1937-0652
DOI: 10.2140/ant.2021.15.773
Popis: Given a finite dimensional Lie algebra $L$ let $I$ be the augmentation ideal in the universal enveloping algebra $U(L)$. We study the conditions on $L$ under which the $Ext$-groups $Ext (k,k)$ for the trivial $L$-module $k$ are the same when computed in the category of all $U(L)$-modules or in the category of $I$-torsion $U(L)$-modules. We also prove that the Rees algebra $\oplus _{n\geq 0}I^n$ is Noetherian if and only if $L$ is nilpotent. An application to cohomology of equivariant sheaves is given.
Comment: Comments are welcome
Databáze: OpenAIRE