Integer Linear Programming for Pattern Set Mining; with an Application to Tiling

Autor: Lakhdar Loukil, Samir Loudni, Yahia Lebbah, Patrice Boizumault, Albrecht Zimmermann, Bruno Crémilleux, Abdelkader Ouali
Přispěvatelé: Laboratoire d'Informatique et Technologies de l'Information d'Oran (LITIO), Université d'Oran Al-Sanya, Equipe CODAG - Laboratoire GREYC - UMR6072, Groupe de Recherche en Informatique, Image et Instrumentation de Caen (GREYC), Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Normandie Université (NU)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)
Jazyk: angličtina
Rok vydání: 2017
Předmět:
Zdroj: Pacific-Asia Conference on Knowledge Discovery and Data Mining
Pacific-Asia Conference on Knowledge Discovery and Data Mining, May 2017, Jeju, South Korea. ⟨10.1007/978-3-319-57529-2_23⟩
Advances in Knowledge Discovery and Data Mining ISBN: 9783319575285
PAKDD (2)
Popis: International audience; Pattern set mining is an important part of a number of data mining tasks such as classification, clustering, database tiling, or pattern summarization. Efficiently mining pattern sets is a highly challenging task and most approaches use heuristic strategies. In this paper, we formulate the pattern set mining problem as an optimization task, ensuring that the produced solution is the best one from the entire search space. We propose a method based on integer linear programming (ILP) that is exhaustive, declarative and optimal. ILP solvers can exploit different constraint types to restrict the search space, and can use any pattern set measure (or combination thereof) as an objective function, allowing the user to focus on the optimal result. We illustrate and show the efficiency of our method by applying it to the tiling problem.
Databáze: OpenAIRE