Local Balancing of the Electricity Grid in a Renewable Municipality; Analyzing the Effectiveness and Cost of Decentralized Load Balancing Looking at Multiple Combinations of Technologies
Autor: | Reinerus Benders, Henri Moll, C. E. J. van Someren, F. Pierie, Gideon A.H. Laugs, S. N.M. Kruse |
---|---|
Přispěvatelé: | Integrated Research on Energy, Environment & Socie |
Rok vydání: | 2021 |
Předmět: |
Technology
Renewable energy Energy storage Control and Optimization Biogas Energy Engineering and Power Technology Context (language use) Demand side management Energy grid capacity and reinforcements Load shifting Curtailment Production (economics) Electrical and Electronic Engineering Engineering (miscellaneous) Renewable Energy Sustainability and the Environment business.industry Load balancing (electrical power) Environmental economics Decentralized load balancing Grid decentralized load balancing renewable energy biogas load shifting energy storage demand side management curtailment energy grid capacity and reinforcements Electricity generation Environmental science business Energy (miscellaneous) |
Zdroj: | Energies, 14(16):4926. MDPI AG Energies; Volume 14; Issue 16; Pages: 4926 Energies, Vol 14, Iss 4926, p 4926 (2021) |
ISSN: | 1996-1073 |
DOI: | 10.3390/en14164926 |
Popis: | With the integration of Intermitted Renewables Energy (I-RE) electricity production, capacity is shifting from central to decentral. So, the question is if it is also necessary to adjust the current load balancing system from a central to more decentral system. Therefore, an assessment is made on the overall effectiveness and costs of decentralized load balancing, using Flexible Renewable Energy (F-RE) in the shape of biogas, Demand Side Management (DSM), Power Curtailment (PC), and electricity Storage (ST) compared to increased grid capacity (GC). As a case, an average municipality in The Netherlands is supplied by 100% I-RE (wind and solar energy), which is dynamically modeled in the PowerPlan model using multiple scenarios including several combinations of balancing technologies. Results are expressed in yearly production mix, self-consumption, grid strain, Net Load Demand Signal, and added cost. Results indicate that in an optimized scenario, self-consumption of the municipality reaches a level of around 95%, the total hours per year production matches demand to over 90%, and overproduction can be curtailed without substantial losses lowering grid strain. In addition, the combination of balancing technologies also lowers the peak load to 60% of the current peak load in the municipality, thereby freeing up capacity for increased demand (e.g., electric heat pumps, electric cars) or additional I-RE production. The correct combination of F-RE and lowering I-RE production to 60%, ST, and PC are shown to be crucial. However, the direct use of DSM has proven ineffective without a larger flexible demand present in the municipality. In addition, the optimized scenario will require a substantial investment in installations and will increase the energy cost with 75% in the municipality (e.g., from 0.20€ to 0.35€ per kWh) compared to 50% (0.30€ per kWh) for GC. Within this context, solutions are also required on other levels of scale (e.g., on middle or high voltage side or meso and macro level) to ensure security of supply and/or to reduce overall costs. |
Databáze: | OpenAIRE |
Externí odkaz: |