Neuartige Hybrid Hydrogele auf Basis von Poly(2-oxazolin)
Autor: | Hu, Chen |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2022 |
Předmět: | |
Popis: | Motivated by the great potential offered by the combination of additive manufacturing technology and hydrogels, especially in the field of tissue engineering and regenerative medicine, a series of novel hybrid hydrogel inks were developed based on the recently described thermogelling poly(2-oxazoline)s-block-poly(2-oxazine)s diblock copolymers, which may help to expand the platform of available hydrogel inks for this transformative 3D printing technology (Fig. 5.1). In the present thesis, the first reported thermogelling polymer solely consisting of POx and POzi, i.e., the diblock copolymer PMeOx-b-PnPrOzi comprising a hydrophilic block (PMeOx) and a thermoresponsive block (PnPrOzi), was selected and used as a proof-of-concept for the preparation of three novel hybrid hydrogels. Therefore, three batches of the diblock copolymers with a DP of 100 were synthesized for the study of three different hybrid hydrogels with a special focus on their suitability as (bio)inks for extrusion-based 3D printing. The PMeOx-b-PnPrOzi diblock copolymer solution shows a temperature induced reversible gelation behavior above a critical polymer concentration of 20 wt%, as described for the Pluronic F127 solution but with a unique gelation mechanism, working through the formation of a bicontinuous sponge-like structure from the physically crosslinked vesicles. Specially, its intrinsic shear thinning behavior and excellent recovery property with a certain yield point make it a promising ink candidate for extrusion-based printing technology. Increasing the polymer concentration is the most traditional approach to improve the printability of an ink material, and serve as the major strategy available to improve the printability of PMeOx-b-PnPrOzi systems prior to this work. From the analysis of rheological properties related to printability, it came a conclusion that increasing the copolymer concentration does improve the hydrogel strength and thus the printability. However, such improvement is very limited and usually leads to other problems such as more viscous systems and stringent requirements on the printers, which are not ideal for the printing process and applications especially in the cell-embedded biofabrication field. POx-b-POzi/clay Hybrid Hydrogel An alternative method proposed to improve the printability of this thermoresponsive hydrogel ink is through nanoclay (Laponite XLG) addition, i.e., the first hybrid hydrogel system of PMeOx-b-PnPrOzi/clay (also named shortly as POx-b-POzi/clay) in this thesis. To optimize the viscoelastic properties of the ink material, Laponite XLG acted as a reinforcement additive and a physically crosslinker was blended with the copolymers. Compared with the pristine copolymer solution of PMeOx-b-PnPrOzi, the hybrid PMeOx-b-PnPrOzi/clay solution well retained the temperature induced gelation performance of the copolymers. The obtained hybrid hydrogels exhibited a rapid in situ reversible thermogelation at a physiological relevant Tgel of around 15 ℃ and a rapid recovery of viscoelastic properties within a few seconds. More importantly, with the addition of only a small amount of 1.2 wt% clay, it exhibited obviously enhanced shear thinning character (n = 0.02), yield stress (240 Pa) and mechanical strength (storage modulus over 5 kPa). With this novel hybrid hydrogel, real three-dimensional constructs with multiple layers and various geometries are generation with greatly enhanced shape fidelity and resolution. In this context, the thermogelling properties of the hybrid hydrogels over a copolymer concentration range of 10-20 wt% and a clay concentration of 0-4 wt% were systematically investigated, and from which a printable window was obtained from the laboratory as a reference. In fact, the printing performance of an ink is not only determined by the intrinsic physicochemical properties of the material, but is also influenced by the external printing environments as well as the printer parameter settings. All the printing experiments in this study were conducted under a relatively optimized conditions obtained from preliminary experiments. In future work, the relationship between material rheology properties, printer parameters and printing performance could be systematically explored. Such a fundamental study will help to develop models that allows the prediction and comparison of printing results from different researches based on the parameters available through rheology, which is very beneficial for further development of more advanced ink systems. Although the printability has been significantly improved by the addition of nanoclay Laponite XLG, the hybrid hydrogels and their printed constructs still suffer from some major limitations. For example, these materials are still thermoresponsive, which will cause the printed constructs to collapse when the environment temperature changes below their Tgel. In addition, the formed hydrogel constructs are mechanical too weak for load-bearing applications, and the allowed incubation time is very limited during media exchange/addition as it will lead to dissolution of the hydrogels due to dilution effects. Therefore, it is essential to establish a second (chemical or physical) crosslinking mechanism that allows further solidification of the gels after printing. It should be kept in mind that the second crosslinking step will eliminate the thermoresponsive behavior of the gels and thus the possibility of cell recovery. In this case, besides through the traditional approach of copolymer modification to realize further crosslinking, like one of the well-known post-polymerization modification approach Diels-Alder reaction,[430] designing of interpenetrating networks (IPN) hydrogels serves as one of the major strategy for advanced (bio)ink preparation.[311] Therefore, the second hybrid hydrogel system of PMeOx-b-PnPrOzi/PDMAA/clay (also named shortly as POx-b-POzi/PDMAA/clay) was developed in this thesis, which is a 3D printable and highly stretchable ternary organic-inorganic IPN hydrogel. POx-b-POzi/PDMAA/clay Hybrid Hydrogel The nanocomposite IPN hydrogel combines a thermoresponsive hydrogel with clay described above and in situ polymerized poly(N, N-dimethylacrylamide). Before in situ polymerization, the thermoresponsive hydrogel precursors exhibited thermogelling behavior (Tgel ~ 25 ℃, G' ~ 6 kPa) and shear thinning properties, making the system well-suited for extrusion-based 3D printing. After chemical curing of the 3D-printed constructs by free radical polymerization, the resulting IPN hydrogels show excellent mechanical strength with a high stretchability to a tensile strain at break exceeding 550%. The hybrid hydrogel can sustain a high stretching deformation and recover quickly due to the energy dissipation from the non-covalent interactions. With this hybrid hydrogel, integrating with the advanced 3D-printing technique, various 3D constructs can be printed and cured successfully with high shape fidelity and geometric accuracy. In this context, we also investigated the possibility of acrylic acid (AA) and 2-hydroxyethylmethacrylate (HEMA) as alternative hydrogel precursors. However, the addition of these two monomers affected the thermogelation of POx-b-POzi in an unfavorable manner, as these monomers competed more effectively with water molecules, preventing the hydration of nPrOzi block at lower temperatures and therefore, the liquefaction of the gels. Furthermore, the influence of the printing process and direction on the mechanical properties of the hydrogel was investigated and compared with the corresponding bulk materials obtained from a mold. No significant effects from the additive manufacturing process were observed due to a homogeneously adhesion and merging between sequentially deposited layers. In the future, further studies on the specific performance differences among hydrogels fabricated at different printing directions/speeds would be of great interest to the community, as this allows for a more accurately control and better predict of the printed structures. This newly developed hybrid IPN hydrogel is expected to expand the material toolbox available for hydrogel-based 3D printing, and may be interesting for a wide range of applications including tissue engineering, drug delivery, soft robotics, and additive manufacturing in general. However, in this case, the low toxicity from the monomer DMAA and other small molecules residuals in the polymerized hydrogels made this hybrid hydrogel not ideal for bioprinting in the field of biofabrication. For this problem, cyto-/biocompatible monomers such as polyethylene glycol diacrylate (PEGDA) can be used as an alternative, while the overall properties of the hydrogels including mechanical properties should be re-evaluated accordingly. Moreover, the swelling behavior of the hydrogels should also be taken into account, as it may most likely affect the mechanical strength and geometry size of the printed scaffold, but is often be overlooked after printing. For example, regarding the specific hybrid hydrogel POx-b-POzi/PDMAA/clay in this work, an equilibrium swelling ratio of 1100% was determined. The printed hydrogel cuboid experienced a volume increasing over 6-fold after equilibrium swelling in water, and became mechanical fragile due to the formation of a swollen hydrogel network absorbing large amount of water. POx-b-POzi/Alg/clay Hybrid Hydrogel In the final part of this dissertation, to enable the cell-loaded bioprinting and long-term cell culture, the third hybrid hydrogel system POx-b-POzi/Alg/clay was introduced by replacing the monomer DMAA to the natural polysaccharides alginate. Initially, detailed rheological characterization and mechanical tests were performed to evaluate their printability and mechanically properties. Subsequently, some simple patterns were printed with the optimized hydrogel precursor solutions for the preliminary filament fusion and collapse test before proceeding to more complex printings. The fibers showed a sufficient stability which allows the creation of large structures with a height of a few centimeters and a suspended filament up to centimeter. Accordingly, various 3D constructs including suspended filaments were printed successfully with high stackability and shape fidelity. The structure after extrusion was physical crosslinked easily by soaking in CaCl2 solution and, thereafter exhibited a good mechanical flexibility and long-term stability. Interestingly, the mechanical strength and geometry size of the generated scaffolds were well maintained over a culture period of weeks in water, which is of great importance for clinical applications. In addition, the post-printing ionic crosslinking of alginate could also be realized by other di/trivalent cations such as Fe3+ and Tb3+. Subsequently, the cell-laden printing with this hybrid hydrogel and post-printing crosslinking by Ca2+ ions highlighting its feasibility for 3D bioprinting. WST-1 assay of fibroblast suggested no-dose dependent cytocompatibility of the hydrogel precursor solution. The cell distribution was uniform throughout the printed construct, and proliferated with high cell viability during the 21 days culture. The presented hybrid approach, utilizing the beneficial properties of the POx-b-POzi base material, could be interesting for a wide range of bioprinting applications and potentially enabling also other biological bioinks such as collagen, hyaluronic acid, decellularized extracellular matrix or cellulose based bioinks. Although the results look promising and the developed hydrogel is an important bioink candidate, the long-term in vitro cell studies with different cell lines and clinical model establishment are still under investigation, which remains a long road but is of great importance before realizing real clinical application. Last but not least, the improvement to the printability of thermogelling POx/POzi-based copolymers by the clay Laponite XLG was also demonstrated in another thermogelling copolymer PEtOx-b-PnPrOzi. This suggests that the addition of clay may be a general strategy to improve the printability of such polymers. Despite these advances in this work which significantly extended the (bio)material platform of additive manufacturing technology, the competition is still fierce and more work should be done in the further to reveal the potential and limitations of this kind of new and promising candidate (bio)ink materials. It is also highly expected for further creative works based on the thermogelling POx/POzi polymers, such as crosslinking in Ca2+ solution containing monomer acrylamide to prepare printable and mechanically tough hydrogels, research on POx-based support bath material, and print of clinically more relevant sophisticated structures such as 3D microvascular networks omnidirectionally. Motiviert durch das große Potenzial, das die Kombination von additiver Fertigungstechnologie und Hydrogelen insbesondere im Bereich des Tissue Engineering und der regenerativen Medizin bietet, wurde eine Reihe neuartiger Hybrid-Hydrogeltinten auf der Grundlage der kürzlich beschriebenen thermogelierenden Poly(2-oxazolin)s-block-Poly(2-oxazin)s-diblock-copolymere entwickelt, die dazu beitragen können, die Plattform der verfügbaren Hydrogeltinten für diese transformative 3D-Drucktechnologie zu erweitern (Abb. 6.1). In der vorliegenden Arbeit wurde das erste bekannte thermogelierende Polymer, das ausschließlich aus POx und POzi besteht, d.h. das Diblock-Copolymer PMeOx-b-PnPrOzi, das einen hydrophilen Block (PMeOx) und einen thermoresponsiven Block (PnPrOzi) umfasst, ausgewählt und als Proof-of-Concept für die Herstellung von drei neuartigen Hybridhydrogelen verwendet. Daher wurden drei Chargen der Diblock-Copolymere mit einem DP von 100 für die Untersuchung von drei verschiedenen Hybrid-Hydrogelen synthetisiert, wobei der Schwerpunkt auf ihrer Eignung als (Bio-)Tinten für den extrusionsbasierten 3D-Druck lag. Die PMeOx-b-PnPrOzi Diblock-Copolymer-Lösung zeigt ein temperaturinduziertes reversibles Gelierverhalten oberhalb einer kritischen Polymerkonzentration von 20 Gew.-%, wie für die Pluronic F127-Lösung beschrieben, jedoch mit einem einzigartigen Geliermechanismus, der durch die Bildung einer bikontinuierlichen, schwammartigen Struktur aus den physikalisch vernetzten Vesikeln zustande kommt. Insbesondere das intrinsische Scherverdünnungsverhalten und die hervorragende Rückstelleigenschaft mit einer bestimmten Fließgrenze machen sie zu einem vielversprechenden Tintenkandidaten für die extrusionsbasierte Drucktechnologie. Die Erhöhung der Polymerkonzentration ist der traditionellste Ansatz zur Verbesserung der Bedruckbarkeit eines Druckfarbenmaterials und diente vor dieser Arbeit als Hauptstrategie zur Verbesserung der Bedruckbarkeit von PMeOx-b-PnPrOzi-Systemen. Die Analyse der rheologischen Eigenschaften, die mit der Druckfähigkeit zusammenhängen, ergab, dass eine Erhöhung der Copolymerkonzentration die Festigkeit des Hydrogels und damit die Druckfähigkeit verbessert. Diese Verbesserung ist jedoch sehr begrenzt und führt in der Regel zu anderen Problemen wie zähflüssigeren Systemen und strengen Anforderungen an die Drucker, was für den Druckprozess und die Anwendungen insbesondere im Bereich der zelleingebetteten Biofabrikation nicht ideal ist. POx-b-POzi/clay Hybrid Hydrogel Eine alternative Methode zur Verbesserung der Druckbarkeit dieser thermoresponsiven Hydrogeltinte ist die Zugabe von Nanoclay (Laponite XLG), d. h. das erste hybride Hydrogelsystem aus PMeOx-b-PnPrOzi/clay (in dieser Arbeit auch kurz als POx-b-POzi/clay bezeichnet). Um die viskoelastischen Eigenschaften der Tinte zu optimieren, wurde Laponite XLG als Verstärkungsadditiv eingesetzt und ein physikalischer Vernetzer mit den Copolymeren gemischt. Im Vergleich zur ursprünglichen Copolymerlösung von PMeOx-b-PnPrOzi behielt die hybride PMeOx-b-PnPrOzi/clay-Lösung die temperaturinduzierte Gelierleistung der Copolymere gut bei. Die erhaltenen Hybrid-Hydrogele zeigten eine schnelle reversible Thermogelierung in situ bei einer physiologisch relevanten Tgel von etwa 15 ℃ und eine rasche Erholung der viskoelastischen Eigenschaften innerhalb weniger Sekunden. Noch wichtiger ist, dass die Zugabe einer geringen Menge von 1.2 Gew.-% clay zu einer deutlichen Verbesserung der Scherverdünnung (n = 0.02), der Fließspannung (240 Pa) und der mechanischen Festigkeit (Speichermodul über 5 kPa) führte. Mit diesem neuartigen Hybrid-Hydrogel lassen sich echte dreidimensionale Konstrukte mit mehreren Schichten und verschiedenen Geometrien mit deutlich verbesserter Formtreue und Auflösung erzeugen. In diesem Zusammenhang wurden die Thermogel-Eigenschaften der Hybrid-Hydrogele über einen Copolymer-Konzentrationsbereich von 10-20 Gew.-% und einer clay-Konzentration von 0-4 Gew.-% systematisch untersucht, wobei ein druckbares Fenster als Referenz aus dem Labor gewonnen wurde. Die Druckleistung einer Tinte wird nicht nur durch die physikalisch-chemischen Eigenschaften des Materials bestimmt, sondern auch durch die äußeren Druckbedingungen und die Einstellungen der Druckerparameter beeinflusst. Alle Druckexperimente in dieser Studie wurden unter relativ optimierten Bedingungen durchgeführt, die durch Vorversuche ermittelt wurden. In zukünftigen Arbeiten könnte die Beziehung zwischen den rheologischen Eigenschaften des Materials, den Druckerparametern und der Druckleistung systematisch erforscht werden. Eine solche grundlegende Studie wird dazu beitragen, Modelle zu entwickeln, die die Vorhersage und den Vergleich von Druckergebnissen aus verschiedenen Untersuchungen auf der Grundlage der über die Rheologie verfügbaren Parameter ermöglichen, was für die weitere Entwicklung fortschrittlicherer Tintensysteme sehr nützlich ist. Obwohl die Druckbarkeit durch die Zugabe von Nanoclay Laponite XLG erheblich verbessert wurde, weisen die hybriden Hydrogele und ihre gedruckten Konstrukte immer noch einige wesentliche Einschränkungen auf. Zum Beispiel sind diese Materialien immer noch thermoresponsiv, was dazu führt, dass die gedruckten Konstrukte kollabieren, wenn die Umgebungstemperatur unter ihre Tgel-Temperatur fällt. Außerdem sind die gebildeten Hydrogelkonstrukte mechanisch zu schwach für lasttragende Anwendungen, und die zulässige Inkubationszeit ist während des Medienaustauschs/der Medienzugabe sehr begrenzt, da sie aufgrund von Verdünnungseffekten zur Auflösung der Hydrogele führt. Daher ist es wichtig, einen zweiten (chemischen oder physikalischen) Vernetzungsmechanismus zu schaffen, der eine weitere Verfestigung der Gele nach dem Druck ermöglicht. Dabei ist zu bedenken, dass der zweite Vernetzungsschritt das thermoresponsive Verhalten der Gele und damit die Möglichkeit der Rückgewinnung von Zellen. In diesem Fall ist neben dem traditionellen Ansatz der Copolymermodifikation zur weiteren Vernetzung, wie z. B. der bekannten Diels-Alder-Reaktion,[430] die Entwicklung von Hydrogelen mit interpenetrierenden Netzwerken (IPN) eine der wichtigsten Strategien für die Herstellung fortschrittlicher (Bio-)Tinten.[311] Daher wurde in dieser Arbeit das zweite hybride Hydrogelsystem PMeOx-b-PnPrOzi/PDMAA/clay (auch kurz als POx-b-POzi/PDMAA/clay bezeichnet) entwickelt, das ein 3D-druckbares und hoch dehnbares ternäres organisch-anorganisches IPN-Hydrogel ist. POx-b-POzi/PDMAA/clay Hybrid Hydrogel Das Nanokomposit-IPN-Hydrogel kombiniert ein thermoresponsives Hydrogel mit dem oben beschriebenen clay Laponite XLG und in situ polymerisiertem Poly(N,N-dimethylacrylamid). Vor der In-situ-Polymerisation zeigten die thermoresponsiven Hydrogelvorläufer ein Thermogelling-Verhalten (Tgel ~ 25 ℃, G' ~ 6 kPa) und scherverdünnende Eigenschaften, wodurch sich das System gut für den extrusionsbasierten 3D-Druck eignet. Nach der chemischen Aushärtung der 3D-gedruckten Konstrukte durch radikalische Polymerisation zeigen die resultierenden IPN-Hydrogele eine ausgezeichnete mechanische Festigkeit mit einer hohen Dehnbarkeit bis zu einer Bruchdehnung von über 550 %. Das Hybridhydrogel kann eine hohe Dehnungsverformung aushalten und sich aufgrund der Energiedissipation durch die nicht-kovalenten Wechselwirkungen schnell erholen. Mit diesem Hybrid-Hydrogel können in Verbindung mit der fortschrittlichen 3D-Drucktechnik verschiedene 3D-Konstrukte mit hoher Formtreue und geometrischer Genauigkeit gedruckt und ausgehärtet werden. In diesem Zusammenhang untersuchten wir auch die Möglichkeit von Acrylsäure (AA) und 2-Hydroxyethylmethacrylat (HEMA) als alternative Hydrogelvorläufer. Die Zugabe dieser beiden Monomere wirkte sich jedoch ungünstig auf die Thermogelierung von POx-b-POzi aus, da diese Monomere effektiver mit Wassermolekülen konkurrierten und die Hydratation des nPrOzi-Blocks bei niedrigeren Temperaturen und damit die Verflüssigung der Gele verhinderten. Darüber hinaus wurde der Einfluss des Druckverfahrens und der Druckrichtung auf die mechanischen Eigenschaften des Hydrogels untersucht und mit den entsprechenden aus einer Form gewonnenen Massenmaterialien verglichen. Es wurden keine signifikanten Auswirkungen des additiven Herstellungsverfahrens beobachtet, da die nacheinander aufgebrachten Schichten homogen aneinander haften und miteinander verschmelzen. In Zukunft wären weitere Studien zu den spezifischen Leistungsunterschieden zwischen Hydrogelen, die mit unterschiedlichen Druckrichtungen und -geschwindigkeiten hergestellt wurden, von großem Interesse für die Fachwelt, da dies eine genauere Kontrolle und bessere Vorhersage der gedruckten Strukturen ermöglicht. Dieses neu entwickelte hybride IPN-Hydrogel wird voraussichtlich die Materialpalette für den hydrogelbasierten 3D-Druck erweitern und könnte für eine Vielzahl von Anwendungen interessant sein, darunter Tissue Engineering, Medikamentenverabreichung, Soft Robotics und additive Fertigung im Allgemeinen. In diesem Fall war das Hybrid-Hydrogel jedoch aufgrund der geringen Toxizität des Monomers DMAA und anderer kleiner Moleküle, die in den polymerisierten Hydrogelen zurückblieben, nicht ideal für das Bioprinting im Bereich der Biofabrikation. Für dieses Problem können zyto-/biokompatible Monomere wie Polyethylenglykoldiacrylat (PEGDA) als Alternative verwendet werden, wobei die Gesamteigenschaften der Hydrogele einschließlich der mechanischen Eigenschaften entsprechend neu bewertet werden sollten. Darüber hinaus sollte auch das Quellverhalten der Hydrogele berücksichtigt werden, da es sich höchstwahrscheinlich auf die mechanische Festigkeit und die Geometriegröße des gedruckten Gerüsts auswirkt, aber nach dem Druck oft übersehen wird. Für das in dieser Arbeit verwendete Hybrid-Hydrogel POx-b-POzi/PDMAA/clay wurde zum Beispiel ein Gleichgewichtsquellverhältnis von 1100 % ermittelt. Der gedruckte Hydrogelquader erfuhr nach der Gleichgewichtsquellung in Wasser eine Volumenzunahme um das 6-fache und wurde aufgrund der Bildung eines gequollenen Hydrogelnetzwerks, das eine große Menge Wasser absorbiert, mechanisch brüchig. POx-b-POzi/Alg/clay Hybrid Hydrogel Im letzten Teil dieser Dissertation wurde das dritte hybride Hydrogelsystem POx-b-POzi/Alg/clay eingeführt, um das zellbeladene Bioprinting und die langfristige Zellkultur zu ermöglichen, indem das Monomer DMAA durch das natürliche Polysaccharid Alginat ersetzt wurde. Zunächst wurden eine detaillierte rheologische Charakterisierung und mechanische Tests durchgeführt, um die Druckbarkeit und die mechanischen Eigenschaften zu bewerten. Anschließend wurden einige einfache Muster mit den optimierten Hydrogel-Vorläuferlösungen gedruckt, um die Fusion und das Koaleszieren der Stränge zu testen, bevor komplexere Drucke durchgeführt wurden. Die Stränge wiesen eine ausreichende Stabilität auf, die die Herstellung großer Strukturen mit einer Höhe von einigen Zentimetern und einem hängenden Filament von bis zu einem Zentimeter ermöglicht. Dementsprechend wurden verschiedene 3D-Konstruktionen, einschließlich hängender Filamente, erfolgreich mit hoher Stapelbarkeit und Formtreue gedruckt. Die Struktur wurde nach der Extrusion durch Eintauchen in CaCl2-Lösung leicht physikalisch vernetzt und wies danach eine gute mechanische Flexibilität und Langzeitstabilität auf. Interessanterweise blieben die mechanische Festigkeit und die geometrische Größe der erzeugten Gerüste über einen Kulturzeitraum von mehreren Wochen in Wasser erhalten, was für klinische Anwendungen von großer Bedeutung ist. Darüber hinaus könnte die ionische Vernetzung von Alginat nach dem Druck auch mit anderen zwei- oder dreiwertigen Kationen wie Fe3+ und Tb3+ erfolgen. Anschließend wurde das Hybrid-Hydrogel mit Zellen verdruckt und nach dem Druck durch Ca2+-Ionen vernetzt, was seine Eignung für das 3D-Bioprinting unterstreicht. Der WST-1-Test an Fibroblasten zeigte, dass die Hydrogelvorläuferlösung dosisunabhängig zytokompatibel ist. Die Zellen verteilten sich gleichmäßig über das gesamte gedruckte Konstrukt und vermehrten sich während der 21-tägigen Kultur mit hoher Zelllebensfähigkeit. Der vorgestellte hybride Ansatz, der die vorteilhaften Eigenschaften des POx-b-POzi-Basismaterials nutzt, könnte für ein breites Spektrum von Bioprinting-Anwendungen interessant sein und möglicherweise auch andere biologische Biotinten wie Kollagen, Hyaluronsäure, dezellularisierte extrazelluläre Matrix oder auf Zellulose basierende Biotinten ermöglichen. Obwohl die Ergebnisse vielversprechend aussehen und das entwickelte Hydrogel ein wichtiger Biotinten-Kandidat ist, sind die langfristigen In-vitro-Zellstudien mit verschiedenen Zelllinien und die Etablierung eines klinischen Modells noch in der Forschung, was ein langer Weg ist, aber von großer Bedeutung, bevor eine echte klinische Anwendung realisiert werden kann. Nicht zuletzt wurde die Verbesserung der Druckfähigkeit von thermogelierenden POx/POzi-Copolymeren durch den clay Laponite XLG auch bei einem anderen thermogelierenden Copolymer PEtOx-b-PnPrOzi nachgewiesen. Dies deutet darauf hin, dass die Zugabe von Ton eine allgemeine Strategie zur Verbesserung der Druckfähigkeit solcher Polymere sein könnte. Trotz dieser Fortschritte in dieser Arbeit, die die (Bio-)Materialplattform der additiven Fertigungstechnologie erheblich erweitert hat, ist der Wettbewerb immer noch hart, und es sollte weiter daran gearbeitet werden, das Potenzial und die Grenzen dieser Art von neuen und vielversprechenden Kandidaten für (Bio-)Tintenmaterialien aufzuzeigen. Weitere kreative Arbeiten auf der Grundlage der thermogelierenden POx/POzi-Polymere erwartet, z. B. die Vernetzung in einer Ca2+-haltigen Lösung, die das Monomer Acrylamid enthält, um druckbare und mechanisch widerstandsfähige Hydrogele herzustellen, die Erforschung von POx-basiertem Badematerial und der Druck klinisch relevanterer komplexer Strukturen wie mikrovaskulärer 3D-Netzwerke in allen Richtungen. |
Databáze: | OpenAIRE |
Externí odkaz: |