Progress on the description of identifying code polyhedra for some families of split graphs

Autor: Silvia M. Bianchi, Annegret Wagler, Gabriela R. Argiroffo
Přispěvatelé: Laboratoire d'Informatique, de Modélisation et d'Optimisation des Systèmes (LIMOS), Ecole Nationale Supérieure des Mines de St Etienne-Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020]), Ecole Nationale Supérieure des Mines de St Etienne (ENSM ST-ETIENNE)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS)
Rok vydání: 2016
Předmět:
Zdroj: Discrete Optimization
Discrete Optimization, Elsevier, 2016, 22, pp.225-240. ⟨10.1016/j.disopt.2016.06.002⟩
Discrete Optimization, 2016, 22, pp.225-240. ⟨10.1016/j.disopt.2016.06.002⟩
ISSN: 1572-5286
1873-636X
Popis: International audience; The identifying code problem is a newly emerging search problem, challenging both from a theoretical and a computational point of view, even for special graphs like bipartite graphs and split graphs. Hence, a typical line of attack for this problem is to determine minimum identifying codes of special graphs or to provide bounds for their size. In this work we study the associated polyhedra for some families of split graphs: headless spiders and complete suns. We provide the according linear relaxations, discuss their combinatorial structure, and demonstrate how the associated polyhedra can be entirely described or polyhedral arguments can be applied to find minimum identifying codes for special split graphs. We discuss further lines of research in order to apply similar techniques to obtain strong lower bounds stemming from linear relaxations of the identifying code polyhedron, enhanced by suitable cutting planes to be used in a B&C framework.
Databáze: OpenAIRE