Learning pretopological spaces to extract ego-centered communities

Autor: Guillaume Cleuziou, Gaëtan Caillaut, Nicolas Dugué
Přispěvatelé: Laboratoire d'Informatique Fondamentale d'Orléans (LIFO), Institut National des Sciences Appliquées - Centre Val de Loire (INSA CVL), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université d'Orléans (UO), Ecole Nationale Supérieure d'Ingénieurs de Bourges-Université d'Orléans (UO), Laboratoire d'Informatique de l'Université du Mans (LIUM), Le Mans Université (UM)
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD)
Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD), Apr 2019, Macau, China
Advances in Knowledge Discovery and Data Mining ISBN: 9783030161446
PAKDD (2)
Popis: We present a pretopological based approach to extract ego-centered communities. Classical methods often consider only one structural feature of the network, whereas pretopology enables to do multi-criteria analysis. Our approach consists in learning a logical combination of network’s descriptors to define a pretopological space. Ego-centered communities are extracted by computing the elementary closure of each node. The quality of such communities is evaluated against the ground truth communities. We show the benefits of our method by comparing it to others on both real and synthetic networks.
Databáze: OpenAIRE