Materials synthesis at terapascal static pressures

Autor: Leonid Dubrovinsky, Saiana Khandarkhaeva, Timofey Fedotenko, Dominique Laniel, Maxim Bykov, Carlotta Giacobbe, Eleanor Lawrence Bright, Pavel Sedmak, Stella Chariton, Vitali Prakapenka, Alena V. Ponomareva, Ekaterina A. Smirnova, Maxim P. Belov, Ferenc Tasnádi, Nina Shulumba, Florian Trybel, Igor A. Abrikosov, Natalia Dubrovinskaia
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Nature 605(7909), 274-278 (2022). doi:10.1038/s41586-022-04550-2
'Nature ', vol: 605, pages: 274-278 (2022)
ISSN: 0028-0836
DOI: 10.3204/pubdb-2022-06250
Popis: Nature 605(7909), 274 - 278 (2022). doi:10.1038/s41586-022-04550-2
Theoretical modelling predicts very unusual structures and properties of materials at extreme pressure and temperature conditions1,2. Hitherto, their synthesis and investigation above 200 gigapascals have been hindered both by the technical complexity of ultrahigh-pressure experiments and by the absence of relevant in situ methods of materials analysis. Here we report on a methodology developed to enable experiments at static compression in the terapascal regime with laser heating. We apply this method to realize pressures of about 600 and 900 gigapascals in a laser-heated double-stage diamond anvil cell3, producing a rhenium–nitrogen alloy and achieving the synthesis of rhenium nitride Re$_7$N$_3$—which, as our theoretical analysis shows, is only stable under extreme compression. Full chemical and structural characterization of the materials, realized using synchrotron single-crystal X-ray diffraction on microcrystals in situ, demonstrates the capabilities of the methodology to extend high-pressure crystallography to the terapascal regime.
Published by Nature Publ. Group, London [u.a.]
Databáze: OpenAIRE