Nonlinear nonhomogeneous Dirichlet problems with singular and convection terms
Autor: | Youpei Zhang, Nikolaos S. Papageorgiou |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Dirichlet problem
Algebra and Number Theory Partial differential equation Minimal positive solution Mathematical analysis Singular term lcsh:QA299.6-433 Fixed point lcsh:Analysis Differential operator Dirichlet distribution Truncation Nonlinear system symbols.namesake Ordinary differential equation Leray–Schauder alternative principle symbols Frozen variable method Analysis Mathematics Parametric statistics Nonlinear regularity |
Zdroj: | Boundary Value Problems, Vol 2020, Iss 1, Pp 1-21 (2020) |
ISSN: | 1687-2770 |
DOI: | 10.1186/s13661-020-01450-0 |
Popis: | We consider a nonlinear Dirichlet problem driven by a general nonhomogeneous differential operator and with a reaction exhibiting the combined effects of a parametric singular term plus a Carathéodory perturbation $f(z,x,y)$ f ( z , x , y ) which is only locally defined in $x \in {\mathbb {R}} $ x ∈ R . Using the frozen variable method, we prove the existence of a positive smooth solution, when the parameter is small. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |