Nonpositive curvature in p-Schatten class

Autor: Cristian Marcelo Conde
Rok vydání: 2009
Předmět:
Zdroj: Journal of Mathematical Analysis and Applications. 356(2):664-673
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2009.03.036
Popis: We study the geometry of the set p, with 1 < p < ∞, which consists of perturbations of the identity operator by p-Schatten class operators, which are positive and invertible as elements of B(H). These manifolds have natural and invariant Finsler structures. In [C. Conde, Geometric interpolation in p-Schatten class, J. Math. Anal. Appl. 340 (2008) 920– 931], we introduced the metric dp and exposed several results about this metric space. The aim of this work is to prove that the space (p,dp) behaves in many senses like a nonpositive curvature metric space. Fil: Conde, Cristian Marcelo. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina
Databáze: OpenAIRE