Distributed Operator Placement for IoT Data Analytics Across Edge and Cloud Resources
Autor: | Daniel Balouek-Thomert, Eduard Gibert Renart, Laurent Lefèvre, Manish Parashar, Marcos Dias De Assuncao, Alexandre da Silva Veith |
---|---|
Přispěvatelé: | Rutgers, The State University of New Jersey [New Brunswick] (RU), Rutgers University System (Rutgers), Algorithms and Software Architectures for Distributed and HPC Platforms (AVALON), Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire de l'Informatique du Parallélisme (LIP), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), Université de Lyon, ANR-10-LABX-0070,MILYON,Community of mathematics and fundamental computer science in Lyon(2010), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL) |
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
Stream Processing
Edge device business.industry Computer science Computation Distributed computing Operator Placement Response time 020206 networking & telecommunications Cloud computing 02 engineering and technology Edge analytics Stream processing [INFO.INFO-PF]Computer Science [cs]/Performance [cs.PF] 0202 electrical engineering electronic engineering information engineering Programming paradigm Data analysis Edge Computing 020201 artificial intelligence & image processing [INFO.INFO-DC]Computer Science [cs]/Distributed Parallel and Cluster Computing [cs.DC] business Edge computing |
Zdroj: | CCGrid 2019-19th Annual IEEE/ACM International Symposium in Cluster, Cloud, and Grid Computing CCGrid 2019-19th Annual IEEE/ACM International Symposium in Cluster, Cloud, and Grid Computing, May 2019, Larnaca, Cyprus. pp.1-10, ⟨10.1109/CCGRID.2019.00060⟩ CCGRID |
DOI: | 10.1109/CCGRID.2019.00060⟩ |
Popis: | International audience; The number of Internet of Things applications is forecast to grow exponentially within the coming decade. Owners of such applications strive to make predictions from large streams of complex input in near real time. Cloud-based architectures often centralize storage and processing, generating high data movement overheads that penalize real-time applications. Edge and Cloud architecture pushes computation closer to where the data is generated, reducing the cost of data movements and improving the application response time. The heterogeneity among the edge devices and cloud servers introduces an important challenge for deciding how to split and orchestrate the IoT applications across the edge and the cloud. In this paper, we extend our IoT Edge Framework, called R-Pulsar, to propose a solution on how to split IoT applications dynamically across the edge and the cloud, allowing us to improve performance metrics such as end-to-end latency (response time), bandwidth consumption, and edge-to-cloud and cloud-to-edge messaging cost. Our approach consists of a programming model and real-world implementation of an IoT application. The results show that our approach can minimize the end-to-end latency by at least 38% by pushing part of the IoT application to the edge. Meanwhile, the edge-to-cloud data transfers are reduced by at least 38% and the messaging costs are reduced by at least 50% when using the existing commercial edge cloud cost models. |
Databáze: | OpenAIRE |
Externí odkaz: |