Ensemble-based uncertainty estimation in Full Waveform Inversion
Autor: | Ludovic Métivier, Julien Thurin, Romain Brossier |
---|---|
Přispěvatelé: | Institut des Sciences de la Terre (ISTerre), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-PRES Université de Grenoble-Institut de recherche pour le développement [IRD] : UR219-Institut national des sciences de l'Univers (INSU - CNRS)-Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-Université Joseph Fourier - Grenoble 1 (UJF), Equations aux Dérivées Partielles (EDP), Laboratoire Jean Kuntzmann (LJK), Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-Institut national des sciences de l'Univers (INSU - CNRS)-Institut de recherche pour le développement [IRD] : UR219-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Equations aux Dérivées Partielles (EDP ), Laboratoire Jean Kuntzmann (LJK ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]) |
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
Regional geology
Waveform inversion Statistical methods Computer science [PHYS.PHYS.PHYS-GEO-PH]Physics [physics]/Physics [physics]/Geophysics [physics.geo-ph] 010103 numerical & computational mathematics 010502 geochemistry & geophysics 01 natural sciences Data assimilation Square root Geochemistry and Petrology 0101 mathematics Uncertainty quantification Tomography 0105 earth and related environmental sciences Environmental geology Bayes estimator Covariance matrix Engineering geology Inversion (meteorology) Kalman filter [INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation Geophysics Probability distributions Frequency domain Ensemble Kalman filter Algorithm |
Zdroj: | Geophysical Journal International Geophysical Journal International, Oxford University Press (OUP), 2019, 219 (3), pp.1613-1635. ⟨10.1093/gji/ggz384⟩ 79th EAGE Conference and Exhibition 2017 79th EAGE Conference and Exhibition 2017, Jun 2017, Paris, France. ⟨10.3997/2214-4609.201701007⟩ Geophysical Journal International, 2019, 219 (3), pp.1613-1635. ⟨10.1093/gji/ggz384⟩ |
ISSN: | 0956-540X 1365-246X |
DOI: | 10.1093/gji/ggz384⟩ |
Popis: | SUMMARY Uncertainty estimation and quality control are critically missing in most geophysical tomographic applications. The few solutions to cope with that issue are often left out in practical applications when these ones grow in scale and involve complex modeling. We present a joint full waveform inversion and ensemble data assimilation scheme, allowing local Bayesian estimation of the solution that brings uncertainty estimation to the tomographic problem. This original methodology relies on a deterministic square root ensemble Kalman filter commonly used in the data assimilation community: the ensemble transform Kalman filter. Combined with a 2D visco-acoustic frequency domain full waveform inversion scheme, the resulting method allows to access a low-rank approximation of the posterior covariance matrix of the solution. It yields uncertainty information through an ensemble-representation, that can conveniently be mapped across the physical domain for visualization and interpretation. The combination of ensemble transform Kalman filter with full waveform inversion is discussed along with the scheme design and algorithmic details that lead to our mixed application. Both synthetic and field-data results are presented, along with the biases that are associated with the limited rank ensemble representation. Finally, we review the open questions and developments perspectives linked with data assimilation applications to the tomographic problem. |
Databáze: | OpenAIRE |
Externí odkaz: |