Binary Component Decomposition Part I: The Positive-Semidefinite Case

Autor: Joel A. Tropp, Richard Kueng
Rok vydání: 2021
Předmět:
Zdroj: SIAM Journal on Mathematics of Data Science. 3:544-572
ISSN: 2577-0187
Popis: This paper studies the problem of decomposing a low-rank positive-semidefinite matrix into symmetric factors with binary entries, either $\{\pm 1\}$ or $\{0,1\}$. This research answers fundamental questions about the existence and uniqueness of these decompositions. It also leads to tractable factorization algorithms that succeed under a mild deterministic condition. A companion paper addresses the related problem of decomposing a low-rank rectangular matrix into a binary factor and an unconstrained factor.
21(+4) pages, 3 figures
Databáze: OpenAIRE