Use of a Glucose Algorithm to Direct Diabetes Therapy Improves A1C Outcomes and Defines an Approach to Assess Provider Behavior
Autor: | Imad M. El-Kebbi, David C. Ziemer, Lawrence S. Phillips, Christopher D. Miller, Curtiss B. Cook, Catherine S. Barnes, Joyce P. Doyle, Daniel L. Gallina, Paul Kolm |
---|---|
Rok vydání: | 2006 |
Předmět: |
Blood Glucose
Male Endocrinology Diabetes and Metabolism medicine.medical_treatment 030209 endocrinology & metabolism 01 natural sciences Health Professions (miscellaneous) Diabetes Therapy 010104 statistics & probability 03 medical and health sciences 0302 clinical medicine Patient Education as Topic Diabetes mellitus medicine Humans Obesity 0101 mathematics Aged Glycemic Glycated Hemoglobin African american business.industry Insulin Mean age Middle Aged medicine.disease Diabetes Mellitus Type 2 Female Observational study business Body mass index Algorithm Algorithms |
Zdroj: | The Diabetes Educator. 32:533-545 |
ISSN: | 1554-6063 0145-7217 |
DOI: | 10.1177/0145721706290834 |
Popis: | Purpose The purpose of this study was to determine whether an algorithm that recommended individualized changes in therapy would help providers to change therapy appropriately and improve glycemic control in their patients. Methods The algorithm recommended specific doses of oral agents and insulin based on a patient's medications and glucose or A1C levels at the time of the visit. The prospective observational study analyzed the effect of the algorithm on treatment decisions and A1C levels in patients with type 2 diabetes. Results The study included 1250 patients seen in pairs of initial and follow-up visits during a 7-month baseline and/or a subsequent 7-month algorithm period. The patients had a mean age of 62 years, body mass index of 33 kg/m2, duration of diabetes of 10 years, were 94% African American and 71% female, and had average initial A1C level of 7.7%. When the algorithm was available, providers were 45% more likely to intensify therapy when indicated (P = .005) and increased therapy by a 20% greater amount (P < .001). A1C level at follow-up was 90% more likely to be Conclusions Use of an algorithm that recommends patient-specific changes in diabetes medications improves both provider behavior and patient A1C levels and should allow quantitative evaluation of provider actions for that provider's patients. |
Databáze: | OpenAIRE |
Externí odkaz: |