Bio‐Inspired Adaptive Sensing through Electropolymerization of Organic Electrochemical Transistors

Autor: Sébastien Pecqueur, Fabien Alibart, Corentin Scholaert, Mahdi Ghazal, Thomas Dargent, Yannick Coffinier, Michel Daher Mansour
Přispěvatelé: Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA), Université catholique de Lille (UCL)-Université catholique de Lille (UCL), Bio-Micro-Electro-Mechanical Systems - IEMN (BIOMEMS - IEMN), Université catholique de Lille (UCL)-Université catholique de Lille (UCL)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA), NanoBioInterfaces - IEMN (NBI - IEMN), Nanostructures, nanoComponents & Molecules - IEMN (NCM - IEMN), The authors thank the RENATECH network and the engineers from IEMN for their support. This work is founded by ERC-CoG IONOS project #773 228., Renatech Network, PCMP PCP, European Project: 773228,H2020,ERC-2017-COG,IONOS(2018)
Rok vydání: 2021
Předmět:
Zdroj: Advanced Electronic Materials
Advanced Electronic Materials, 2022, 8 (3), pp.2100891. ⟨10.1002/aelm.202100891⟩
ISSN: 2199-160X
Popis: International audience; Organic electrochemical transistors are considered today as a key technology to interact with a biological medium through their intrinsic ionic-electronic coupling. In this paper, the authors show how this coupling can be finely tuned (in operando) post-microfabrication via the electropolymerization technique. This strategy exploits the concept of adaptive sensing where both transconductance and impedance are tunable and can be modified on-demand to match different sensing requirements. Material investigation through Raman spectroscopy, atomic force microscopy, and scanning electron microscopy reveals that electropolymerization can lead to a fine control of poly(3,4-ethylenedioxythiophene) (PEDOT) microdomains organization, which directly affects the iono-electronic properties of organic electrochemical transistors (OECTs). They further highlight how volumetric capacitance and effective mobility of PEDOT:polystyrene sulfonate influence distinctively the transconductance and impedance of OECTs. This approach shows to improve the transconductance by 150% while reducing their variability by 60% in comparison with standard spin-coated OECTs. Finally, they show how the technique can influence voltage spike rate hardware classification with direct interest in bio-signals sorting applications.
Databáze: OpenAIRE