Can statistical linkage of missing variables reduce bias in treatment effect estimates in comparative effectiveness research studies?

Autor: Jason P. Swindle, William H. Crown, Jessica Chang, Paul Buzinec, Nilay Shah, Kristijan H. Kahler, M. Olson, Bijan J. Borah
Rok vydání: 2015
Předmět:
Zdroj: Journal of Comparative Effectiveness Research. 4:455-463
ISSN: 2042-6313
2042-6305
Popis: Aim: Missing data, particularly missing variables, can create serious analytic challenges in observational comparative effectiveness research studies. Statistical linkage of datasets is a potential method for incorporating missing variables. Prior studies have focused upon the bias introduced by imperfect linkage. Methods: This analysis uses a case study of hepatitis C patients to estimate the net effect of statistical linkage on bias, also accounting for the potential reduction in missing variable bias. Results: The results show that statistical linkage can reduce bias while also enabling parameter estimates to be obtained for the formerly missing variables. Conclusion: The usefulness of statistical linkage will vary depending upon the strength of the correlations of the missing variables with the treatment variable, as well as the outcome variable of interest.
Databáze: OpenAIRE