Inferring epidemiological links from deep sequencing data: a statistical learning approach for human, animal and plant diseases
Autor: | Gaël Thébaud, Samuel Soubeyrand, M. Alamil, Karine Berthier, Cécile Desbiez, Joseph Hughes |
---|---|
Přispěvatelé: | Biostatistique et Processus Spatiaux (BioSP), Institut National de la Recherche Agronomique (INRA), Medical Research Council, Unité de Pathologie Végétale (PV), Biologie et Génétique des Interactions Plante-Parasite (UMR BGPI), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de la Recherche Agronomique (INRA)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro), ANR grant (SMITID project, ANR-16-CE35-0006), Medical Research Council (MC_UU_12014/12), Division for Plant Health and Environment (SPE) of INRA through the AAP-SPE-2014 framework, Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), Soubeyrand, Samuel |
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
[SDV.SA]Life Sciences [q-bio]/Agricultural sciences
Human animal Computer science Animal Diseases 0302 clinical medicine Databases Genetic Epidemiology pathogen spread épidémiologie végétale pathologie végétale 0303 health sciences Vegetal Biology Training set High-Throughput Nucleotide Sequencing Articles Agricultural sciences contact information Viruses analyse de séquences General Agricultural and Biological Sciences Research Article medicine.medical_specialty Exploit infectious disease training data transmission trees within-host pathogen diversity Communicable Diseases General Biochemistry Genetics and Molecular Biology Deep sequencing 03 medical and health sciences medicine Animals Humans [SDV.BV]Life Sciences [q-bio]/Vegetal Biology pathologie animale modélisation Plant Diseases 030304 developmental biology Models Statistical Statistical learning Outbreak Molecular Sequence Annotation Data science Infectious disease (medical specialty) pathologie humaine Sciences agricoles Biologie végétale 030217 neurology & neurosurgery |
Zdroj: | Philosophical Transactions of the Royal Society B: Biological Sciences Philosophical Transactions of the Royal Society B: Biological Sciences, Royal Society, The, 2019, 374 (1775), ⟨10.1098/rstb.2018.0258⟩ Philosophical Transactions of the Royal Society. B, Biological Sciences 1775 (374), 20180258. (2019) |
ISSN: | 0962-8436 1471-2970 |
DOI: | 10.1098/rstb.2018.0258⟩ |
Popis: | Pathogen sequence data have been exploited to infer who infected whom, by using empirical and model-based approaches. Most of these approaches exploit one pathogen sequence per infected host (e.g. individual, household, field). However, modern sequencing techniques can reveal the polymorphic nature of within-host populations of pathogens. Thus, these techniques provide a subsample of the pathogen variants that were present in the host at the sampling time. Such data are expected to give more insight on epidemiological links than a single sequence per host. In general, a mechanistic viewpoint to transmission and micro-evolution has been followed to infer epidemiological links from these data. Here, we investigate an alternative approach grounded on statistical learning. The idea consists of learning the structure of epidemiological links with a pseudo-evolutionary model applied to training data obtained from contact tracing, for example, and using this initial stage to infer links for the whole dataset. Such an approach has the potential to be particularly valuable in the case of a risk of erroneous mechanistic assumptions, it is sufficiently parsimonious to allow the handling of big datasets in the future, and it is versatile enough to be applied to very different contexts from animal, human and plant epidemiology. This article is part of the theme issue ‘Modelling infectious disease outbreaks in humans, animals and plants: approaches and important themes’. This issue is linked with the subsequent theme issue ‘Modelling infectious disease outbreaks in humans, animals and plants: epidemic forecasting and control’. |
Databáze: | OpenAIRE |
Externí odkaz: |