Many-Body Characterization of Particle-Conserving Topological Superfluids
Autor: | Jorge Dukelsky, Gerardo Ortiz, C. Esebbag, C. W. J. Beenakker, Emilio Cobanera |
---|---|
Přispěvatelé: | Ministerio de Economía y Competitividad (España) |
Rok vydání: | 2014 |
Předmět: | |
Zdroj: | Digital.CSIC. Repositorio Institucional del CSIC instname Physical Review Letters, 113(26), 267002 |
Popis: | 5 págs.; 2 figs.; PACS numbers: 74.20.-z, 03.65.Vf, 74.45.+c, 74.90.+n What distinguishes trivial superfluids from topological superfluids in interacting many-body systems where the number of particles is conserved? Building on a class of integrable pairing Hamiltonians, we present a number-conserving, interacting variation of the Kitaev model, the Richardson-Gaudin-Kitaev chain, that remains exactly solvable for periodic and antiperiodic boundary conditions. Our model allows us to identify fermion parity switches that distinctively characterize topological superconductivity (fermion superfluidity) in generic interacting many-body systems. Although the Majorana zero modes in this model have only a power-law confinement, we may still define many-body Majorana operators by tuning the flux to a fermion parity switch. We derive a closed-form expression for an interacting topological invariant and show that the transition away from the topological phase is of third order © 2014 American Physical Society J. D. and C. E. are supported by Grant No. FIS2012- 34479 of the Spanish Ministry of Economy and Competitiveness. |
Databáze: | OpenAIRE |
Externí odkaz: |