Simulation and experimental validation of a gradient feeding system for fast assessment of the kinetic behavior of a microbial consortium in a tubular biofilm reactor
Autor: | Jaime García-Mena, Merlyn Alejandra Salazar-Huerta, Cleotilde Juárez-Ramírez, Nora Ruiz-Ordaz, Juvencio Galíndez-Mayer |
---|---|
Rok vydání: | 2018 |
Předmět: |
Insecticides
Microbial Consortia Bioengineering Stress (mechanics) Neonicotinoids chemistry.chemical_compound Bioreactors Imidacloprid parasitic diseases Computer Simulation Biological Oxygen Demand Analysis Plug flow Chemistry Substrate (chemistry) Equipment Design General Medicine Models Theoretical Microbial consortium Nitro Compounds Culture Media Oxygen Kinetics Volume (thermodynamics) Chemical engineering Biofilms Industrial and production engineering Aeration Porosity Biotechnology |
Zdroj: | Bioprocess and Biosystems Engineering. 42:17-27 |
ISSN: | 1615-7605 1615-7591 |
DOI: | 10.1007/s00449-018-2009-x |
Popis: | This study deals with the mathematical simulation and experimental validation of a gradient system for the gradual change of the imidacloprid loading rate to a tubular biofilm reactor (TBR). The strategy was used for fast studies of the kinetic and stoichiometric impact caused by the increase in the pesticide loading rate in a TBR, running in plug flow regime. Seemingly, this strategy has never been used for biokinetic and stoichiometric studies in biofilm reactors. For this purpose, a mathematical model describing the substrate transient behavior Sg(t) in a concentration gradient generator system using variable volume tanks is proposed. A second model, representing the temporary variation in the loading rate of imidacloprid to an aerated equalizer tank preceding the packed zone of the TBR, is also presented. Both models were experimentally confirmed. After the treatment of the experimental data, the kinetic and stoichiometric changes occurring in the TBR, caused by the gradual increase in the imidacloprid loading rate, were readily evaluated. Although the structure of the microbial community, at the phylum level, showed similar behavior along the tubular reactor, the stress produced by the gradual increase in imidacloprid concentration had functional consequences on the mixed microbial populations which were reflected on the stoichiometric and kinetic parameters. After increasing more than five times the imidacloprid loading rate to the TBR, the imidacloprid removal efficiency decayed about 40%, and the microbial-specific removal rate of the insecticide showed a decrease of about 30%. |
Databáze: | OpenAIRE |
Externí odkaz: |