Algebraic integrability of foliations with numerically trivial canonical bundle

Autor: Thomas Peternell, Andreas Höring
Přispěvatelé: Laboratoire Jean Alexandre Dieudonné (JAD), Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS), Mathematisches Institut [Bayreuth], Universität Bayreuth, ANR-15-IDEX-0001,UCA JEDI,Idex UCA JEDI(2015)
Rok vydání: 2017
Předmět:
Zdroj: Inventiones Mathematicae
Inventiones Mathematicae, Springer Verlag, 2019, 216 (2), pp.395-419. ⟨10.1007/s00222-018-00853-2⟩
ISSN: 0020-9910
1432-1297
DOI: 10.48550/arxiv.1710.06183
Popis: Given a reflexive sheaf on a mildly singular projective variety, we prove a flatness criterion under certain stability conditions. This implies the algebraicity of leaves for sufficiently stable foliations with numerically trivial canonical bundle such that the second Chern class does not vanish. Combined with the recent work of Druel and Greb-Guenancia-Kebekus this establishes the Beauville-Bogomolov decomposition for minimal models with trivial canonical class.
Comment: 20 pages, removed an assumption from Thm.1.5
Databáze: OpenAIRE