Multiplicity one at full congruence level

Autor: Daniel Le, Benjamin Schraen, Stefano Morra
Přispěvatelé: Department of Mathematics [University of Toronto], University of Toronto, Institut de Mathématiques et de Modélisation de Montpellier (I3M), Centre National de la Recherche Scientifique (CNRS)-Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM), Centre de Mathématiques Laurent Schwartz (CMLS), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)
Jazyk: angličtina
Rok vydání: 2016
Předmět:
Zdroj: Journal of the Institute of Mathematics of Jussieu
Journal of the Institute of Mathematics of Jussieu, Cambridge University Press (CUP), In press, ⟨10.1017/S1474748020000225⟩
ISSN: 1474-7480
1475-3030
DOI: 10.1017/S1474748020000225⟩
Popis: Let $F$ be a totally real field in which $p$ is unramified. Let $\overline{r}: G_F \rightarrow \mathrm{GL}_2(\overline{\mathbb{F}}_p)$ be a modular Galois representation which satisfies the Taylor--Wiles hypotheses and is tamely ramified and generic at a place $v$ above $p$. Let $\mathfrak{m}$ be the corresponding Hecke eigensystem. We describe the $\mathfrak{m}$-torsion in the mod $p$ cohomology of Shimura curves with full congruence level at $v$ as a $\mathrm{GL}_2(k_v)$-representation. In particular, it only depends on $\overline{r}|_{I_{F_v}}$ and its Jordan--H\"{o}lder factors appear with multiplicity one. The main ingredients are a description of the submodule structure for generic $\mathrm{GL}_2(\mathbb{F}_q)$-projective envelopes and the multiplicity one results of \cite{EGS}.
Comment: Accepted for publication at Journal de l Institut de Mathematiques de Jussieu
Databáze: OpenAIRE