Epidemic spreading in modular time-varying networks

Autor: Matthieu Nadini, Kaiyuan Sun, Nicola Perra, Michele Starnini, Enrico Ubaldi, Alessandro Rizzo
Přispěvatelé: Universitat Politècnica de Catalunya. Departament de Física, Universitat Politècnica de Catalunya. CCQM - Condensed, Complex and Quantum Matter Group
Jazyk: angličtina
Rok vydání: 2017
Předmět:
Zdroj: Scientific Reports
Scientific Reports, Vol 8, Iss 1, Pp 1-11 (2018)
Popis: We investigate the effects of modular and temporal connectivity patterns on epidemic spreading. To this end, we introduce and analytically characterise a model of time-varying networks with tunable modularity. Within this framework, we study the epidemic size of Susceptible-Infected-Recovered, SIR, models and the epidemic threshold of Susceptible-Infected-Susceptible, SIS, models. Interestingly, we find that while the presence of tightly connected clusters inhibits SIR processes, it speeds up SIS phenomena. In this case, we observe that modular structures induce a reduction of the threshold with respect to time-varying networks without communities. We confirm the theoretical results by means of extensive numerical simulations both on synthetic graphs as well as on a real modular and temporal network.
Databáze: OpenAIRE