Fluorofoldamer-Based Salt- and Proton-Rejecting Artificial Water Channels for Ultrafast Water Transport
Autor: | Jie Shen, Arundhati Roy, Himanshu Joshi, Laxmicharan Samineni, Ruijuan Ye, Yu-Ming Tu, Woochul Song, Matthew Skiles, Manish Kumar, Aleksei Aksimentiev, Huaqiang Zeng |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Nano Letters. 22:4831-4838 |
ISSN: | 1530-6992 1530-6984 |
Popis: | Here, we report on a novel class of fluorofoldamer-based artificial water channels (AWCs) that combines excellent water over ion selectivity with extraordinarily high water transport efficiency and structural simplicity and robustness. These AWCs were produced by a facile one-pot copolymerization reaction under mild conditions. Among these channels, the best-performing channel (AWC 1) is a n-C8H17-decorated foldamer nanotube with an average channel length of 2.8 nm and a pore diameter of 5.2 Å. AWC 1 demonstrates an ultrafast water conduction rate of 1.4 × 1010 H2O/s per channel, outperforming the archetypal biological water channel, aquaporin 1, by 27%, while excluding salts (i.e., NaCl and KCl) and protons. Unique to this class of channels, the inwardly facing C(sp2)-F moieties are proposed as being critical to enabling the ultrafast and superselective water transport properties observed. |
Databáze: | OpenAIRE |
Externí odkaz: |