Proposed standardized definitions for vertical resolution and uncertainty in the NDACC lidar ozone and temperature algorithms – Part 2: Ozone DIAL uncertainty budget
Autor: | Alexander Haefele, Guillaume Payen, G. L. Liberti, Joanna A. E. van Gijsel, Sophie Godin-Beekmann, Thierry Leblanc, Thomas Trickl, Robert J. Sica |
---|---|
Přispěvatelé: | Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), Department of Physics and Astronomy [London, ON], University of Western Ontario (UWO), Royal Netherlands Meteorological Institute (KNMI), STRATO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Federal Office of Meteorology and Climatology MeteoSwiss, Institute for Meteorology and Climate Research (IMK), Karlsruhe Institute of Technology (KIT), Observatoire des Sciences de l'Univers de La Réunion (OSU-Réunion), Université de La Réunion (UR)-Institut national des sciences de l'Univers (INSU - CNRS), CNR Institute of Atmospheric Sciences and Climate (ISAC), Consiglio Nazionale delle Ricerche (CNR), International Space Science Institute (ISSI), European Space Agency (ESA), Canadian National Sciences and Engineering Research Council, European Project: VALID, Institut national des sciences de l'Univers (INSU - CNRS)-Université de La Réunion (UR), National Research Council of Italy | Consiglio Nazionale delle Ricerche (CNR) |
Jazyk: | angličtina |
Rok vydání: | 2016 |
Předmět: |
Atmospheric Science
Meteorology 010504 meteorology & atmospheric sciences lidar DIAL 01 natural sciences 010309 optics Background noise chemistry.chemical_compound 0103 physical sciences Ozone layer ddc:550 Tropospheric ozone NDACC lcsh:TA170-171 Remote sensing 0105 earth and related environmental sciences [PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph] Covariance matrix Noise (signal processing) lcsh:TA715-787 lcsh:Earthwork. Foundations Covariance error budget lcsh:Environmental engineering Dial ozone Earth sciences Lidar chemistry 13. Climate action Environmental science |
Zdroj: | Atmospheric Measurement Techniques, Vol 9, Iss 8, Pp 4051-4078 (2016) Atmospheric Measurement Techniques Atmospheric Measurement Techniques, European Geosciences Union, 2016, 9 (8), pp.4051-4078. ⟨10.5194/amt-9-4051-2016⟩ Atmospheric Measurement Techniques, 2016, 9 (8), pp.4051-4078. ⟨10.5194/amt-9-4051-2016⟩ Atmospheric measurement techniques, 9 (8), 4051-4078 Atmospheric measurement techniques 9 (2016): 4051–4078. doi:10.5194/amt-9-4051-2016 info:cnr-pdr/source/autori:Leblanc, Thierry; Sica, Robert J.; Van Gijsel, Joanna A E; Godin-Beekmann, Sophie; Haefele, Alexander; Trickl, Thomas; Payen, Guillaume; Liberti, Gianluigi/titolo:Proposed standardized definitions for vertical resolution and uncertainty in the NDACC lidar ozone and temperature algorithms-Part 2: Ozone DIAL uncertainty budget/doi:10.5194%2Famt-9-4051-2016/rivista:Atmospheric measurement techniques (Print)/anno:2016/pagina_da:4051/pagina_a:4078/intervallo_pagine:4051–4078/volume:9 |
ISSN: | 1867-8548 1867-1381 |
DOI: | 10.5194/amt-9-4051-2016⟩ |
Popis: | A standardized approach for the definition, propagation, and reporting of uncertainty in the ozone differential absorption lidar data products contributing to the Network for the Detection for Atmospheric Composition Change (NDACC) database is proposed. One essential aspect of the proposed approach is the propagation in parallel of all independent uncertainty components through the data processing chain before they are combined together to form the ozone combined standard uncertainty. The independent uncertainty components contributing to the overall budget include random noise associated with signal detection, uncertainty due to saturation correction, background noise extraction, the absorption cross sections of O3, NO2, SO2, and O2, the molecular extinction cross sections, and the number densities of the air, NO2, and SO2. The expression of the individual uncertainty components and their step-by-step propagation through the ozone differential absorption lidar (DIAL) processing chain are thoroughly estimated. All sources of uncertainty except detection noise imply correlated terms in the vertical dimension, which requires knowledge of the covariance matrix when the lidar signal is vertically filtered. In addition, the covariance terms must be taken into account if the same detection hardware is shared by the lidar receiver channels at the absorbed and non-absorbed wavelengths. The ozone uncertainty budget is presented as much as possible in a generic form (i.e., as a function of instrument performance and wavelength) so that all NDACC ozone DIAL investigators across the network can estimate, for their own instrument and in a straightforward manner, the expected impact of each reviewed uncertainty component. In addition, two actual examples of full uncertainty budget are provided, using nighttime measurements from the tropospheric ozone DIAL located at the Jet Propulsion Laboratory (JPL) Table Mountain Facility, California, and nighttime measurements from the JPL stratospheric ozone DIAL located at Mauna Loa Observatory, Hawai'i. |
Databáze: | OpenAIRE |
Externí odkaz: |